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Preface

The interest in parallel computer algebra and parallel symbolic computations appeared more
than 20 years ago. Earlier meetings that concerned the Parallel Symbolic Computation were
held in Linz, Austria, (PASCO’94) and in Maui, U.S.A., (PASCO’97).

After 10 years gap the interest in this field has started to grow for the last 5 years.
There were two PASCO conferences at London, Canada (PASCO’07) and in Grenoble, France
(PASCO’10) and four international conferences "Applications of Computer Algebra" where
special sessions of parallel computations were organized. There were special sessions "Parallel
Computer Algebra" at ACA’2006 in Varna, Bulgaria and at ACA’2008 in Linz, Austria,
organized by Gennadi Malaschonok, Tambov University, Russia, the session "High-Performance
Computer Algebra" organized by Jeremy Johnson, Drexel University, USA, and Marc Moreno
Maza, University of Western Ontario, Canada, at ACA’2009 in Western Ontario, Canada and
the session "Parallel Computations" organized by Gennadi Malaschonok and Stephen Watt,
Western Ontario, Canada, at ACA’2010 in Vlora, Albania.

Therefore, the organization of a new international conference "Parallel Computer Algebra"
(ParCA-2010) in Tambov University (Russia) is the natural consequence of the growing interest
shown by the mathematicians in this field of computer science and particular in the growing
activity of Russian researchers in this direction.

This volume of the Tambov University Report contains revised version of the papers
submitted to the international conference "Parallel Computer Algebra" (ParCA’2010) by the
participants and accepted by the program committee after a through reviewing process. The
general areas of interest of ParCA 2010 conference include all aspects of parallel algorithms
for computer algebra, software techniques for parallel computer algebra systems, applications
of parallel computer algebra in all fields and using computer algebra in designing parallel
algorithms or software in other areas.

The topics include:

— parallel polynomial computation,

— parallel algorithms for symbolic linear algebra, matrix operations and linear systems,
— parallel methods for solving systems of differential equations,

— parallel methods for Groebner basis computation,

— parallel algorithms in combinatorics and cryptography,

— parallel algorithms in computational algebraic geometry,

— complexity of parallel computer algebra algorithms,

— reinvention and adaptation of existing symbolic algorithms to a parallel setting.

A total of 18 contributions were received in response to the call for papers. These were
reviewed by members of the Program Committee or by external reviewers selected by the
committee. Each paper received between two and four reviews, with most receiving three.
Finally, 11 papers (about 60 inclusion in these proceedings). While the majority of the authors
are from the Russian Federation, it is a pleasure to see a true international flavor at this meeting,
with authors and PC members representing eleven countries on three continents.

The "Parallel Computer Algebra" conference was supported financially by the Russian
Foundation of Basic Research grant 10-01-06045g, by the Administration of Tambov Region and
by the Tambov State University. We are grateful for the support. Our special gratitude to the
members of ParCA Program Committee and to the members of the ParCA Local Organizing
Committee in Tambov.

June 2010 Gennadi Malaschonok
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UDC 519.612

ESTIMATES OF THE RUNNING TIME AND MEMORY REQUIREMENTS
OF THE NEW ALGORITHM OF SOLVING LARGE SPARSE LINEAR
SYSTEMS OVER THE FIELD WITH TWO ELEMENTS

(© Vasiliy Vadimovich Astakhov
Moscow State University named after M.V. Lomonosov, Leninskie Gory, 1, Moscow, 119991,
Russia, Numbers Theory Department of Information Protection Branch, Student
of Mechanics and Mathematics Faculty, e-mail: astvvas89@mail.ru

Key words: linear sparse systems; pade approximations; corank distribution.

A new algorithm of solving large sparse linear systems over field with two elements is
considered in this work. Algorithm was proposed by M.A. Cherepniov. Algorithm uses
the construction of matrix Pade approximations over finite fields. It is supposed that
elements of approximation polynomials are independent and are identically distributed.
Method for finding distributions of coranks of random symmetric, antisymmetric and
common matrices is constructed. Lower and upper bounds for number of previous
approximations sufficient to construct the next one are obtained. The logarithmic
dependence for sufficient number of keeping approximations on every step for successful
completion of algorithm with probability of 0.99 is found. Using the computer program
exact values of estimates of running time and memory requirements are found, results
are given in this work.

1 Introduction

A new algorithm of solving sparse linear systems over Z, is considered in [1]. Algorithm uses
the construction of matrix Pade approximations over Z,. Let

a= Z;’ioai)\*i,ai € F(nxn),n € N,n > 64,

where \ is transcendental variable.
Matrix polynomials Q) (\) € F(n x n)[\] that satisfy

a(N)QP(N) = PU(N) = B2 pi A

degQ"® < s,degP® < s,

for some P®)(\) € F(n x n)[)\], are said to be matrix Pade approximations with number s,
or simply s-approximation of the series a(\).
Denote the coefficients of approximation according to the formula:

Q(S)(a> = 2?:0@1(8) -

Let Q§S> vanishes. Consider following transformation. With the help of elementary transformations
of the columns of matrix polynomial Q®)()\) we reduce its leading term to the form where left
columns are linearly independent and the rest are zeros. Then we multiply columns of reduced
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matrix polynomial Q(s)(\) corresponding to the zero columns of its leading term on A. Repeat
such procedures until the leading term become nonsingular. Denote the necessary number of
such iterations by (. There was shown in [1], that for s > k& — 1 fulfillment of conditions:

Co<hk—1,C i <k—iji=1,.k—1,

is sufficient for constructing approximation with the number s+ 1, with the help of coefficients
of approximations with numbers s — k+1,...,s.

In this paper we obtain estimates on the expectation of the running time and memory
requirements for the successful completion of the algorithm with high probability.

In the second part of the work we obtain the distribution of coranks of random square
matrices over finite fields. In the third part estimates on the distribution of stohastic variable
( are obtained. In the fourth part we make the estimates on the expected value and the
distribution of auxiliary stochastic variable 7. In the fifth and sixth parts we obtain final
results and give some experimentally established facts.

2 Distribution of coranks of random matrices over Zy,

Consider a matrix, whose elements are independent identically distributed random variables
with values in Z,, where p is a prime number. Denote ¢ = % .

anm[r] - probability that the matrix of size n x m with values in Z, has rank r. ¢,[r] -
probability that the matrix of size n x n with values in Z, has corank r. Let b,[r] = a,,[r].
tnlr] = bnln — 7]

B(x) - generating function for the distribution of ranks of matrices of size n xn. T,(z) -
generating function for the distribution of coranks of matrices of size nxn. B,(z) = 2™-T,(2)

sp[r] - probability that the symmetric matrix of size n x n with values in Z, have rank
r. falr] - probability that the symmetric matrix of size n x n with values in Z, have corank
. Splr] = faln —7]

Sy (z) - generating function for the distribution of ranks of symmetric matrices of size nxn.
F,(z) - generating function for the distribution of coranks of symmetric matrices of size n xn.

Su(z) = 2™ - Fo(3)

xT

P(A) - probability of the event A.

Statement 1

Unm[1T] = A—1ym[1] - D" F @—rym[r — 1] - (1 — P Y nymyr >0 (1)
Proof 1 If the matriz E' size n X m has rank r, then its submatriz without the last row (of
size n—1xm ) may have a rank v or r—1. In the first case n -th row is in the linear span of
the previous rows with probability ]’;—; . In the second it is not in the linear span with probability

r—1

11— ppT . We obtain the required equality. [

Now consider the method that will help us not only to solve this problem for square matrices,
but also for symmetric matrices.

Consider the matrix E of size n X n, rankE = r and discard its last column and row.
The resulting matrix may have a rank r, r—1 or r — 2. Denote the last row without the last
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element for &', the last column (without the last element) for 3, an angular element for e,
and the matrix (n —1) x (n—1) for E'.

Lemma 1 Let the matriz E' has rank j .

1. B is not in the linear span of its columns, and &' is not in the linear span of its rows.
Then, regardless of the value of e matrix E has rank j+ 2.

2. B is in the linear span of its columns, but &' is not in the linear span of its rows. Then,
regardless of the value of e matrix E has rank j+ 1.

3. [ is in the linear span of its columns, and &' is in the linear span of its rows. Then for
exactly one value of the element e matriz E has rank 7, and for the rest of them - rank
J+1.

Proof 2

1. Consider the first n—1 rows of the matriz E , due to the fact, that 3 is not in the linear
span of the columns of E', rank of such submatriz is equal to rankE' +1 =5+ 1. a'
is not in the linear span of the rows of E', hence the last row of E is not in the linear
span of the first n — 1 row. Therefore rank of s equal to j+ 2.

2. Consider the first n — 1 rows of the matriz E , due to the fact, that B is in the linear
span of the columns of E', rank of such submatriz is equal to rankE’ = j. &' is not in
the linear span of the rows of E’, hence the last row of E is not in the linear span of the
first n — 1 rows. Therefore rank of s equal to j+ 1.

3. Consider the first n — 1 rows of the matriz E , due to the fact, that 3 is in the linear
span of the columns of E', rank of such submatriz is equal to rankE’' = j. &' is in the
linear span of the rows of E', therefore it is a linear combination of these rows. If we
consider the linear combination of the rows of E with the same coefficients, we get a row
with the first n — 1 elements identical to &', and the last one is equal to some value e; .
If e = ey then last row is in the linear span of the first n—1 and we obtain rankE = j .
Now we will show, that if e is not equal to ey rank of E is 7+ 1. Assume the oppose,
rankE = j and the last row is a linear combination of the first n— 1. Then consider the
row H = (0,0...0,e — ey), it is also a linear combination of the first n — 1 rows of E,
hence the rows of matrix E with 0 on the last position are linear combinations of the first
n—1 rows of E. Considering these rows and H we get that the submatriz of first n —1
rows of E have rank rankE’' + 1, but it has to be equal to j = rankE’. Contradiction
ends the proof. ]

Theorem 1
balr) = bua[r] - P b [ = 1] @O (= D 2 (L)

dbya[r—=2]-(1—p ™ .- 1—p" "), nr>0. (2)
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Proof 3 With the help of Lemma 1 we obtain:

P7“obabilz'zfyj2 that E has rank r, under condition, that E' has rank r — 2 , is equal to
m = (1-— p:L—l)Q, because it is possible, if and only if the statements of the first item are
fulfilled.

Probability, that E has rank v, under condition, that E' has rank r — 1, is equal to
r—1 r—1 r—1

pe=2-(1— zn—l) : Zn—l + (B=)?- p? , because it is possible, if and only if statements of the

second item are fulfilled or statements of the third item are fulfilled and e # e; .

Probability, that E has rank r, under condition, that E' has rank r, is equal to p3 =
(pff:l)Q . 113, because it is possible, if and only if statements of the third item are fulfilled and
€=e1.

We have:

bn[r] - bn—l[r - 2] *P1 + bn—l[r - 1] * P2 + bn—l[r] *P3.

Substituting p1, pa, p3 with found expressions we obtain the required equality. ]

Corollary 1
Bn[x] - Bn—l(x p2) .p1—2~n +x- Bn—l(I pz) : (pl—Q-n : (p_ 1) —2 'p2—2-n) +x- Bn—l(x p) -2 'pl_n+

=2 (g op—1)- (x = D)Bur(z-p) +2-p " 2 (1 =) Buor(w-p) + 22 Bpi(z) (3)

Proof 4 Consider the coefficient of x" in the right hand side. b, _1[r] - p*" - p'=%" in the first
summand, b, _1[r—1]-p*"2-(p' 2" (p—1) —2-p*~2") -in the second, b, i[r—1]-p"~1-2.-p™"
- in the third, b, 1[r —2]- (1 —2-p" 2. pt=" 4+ p?7=4. p2=2" _in the fourth. It is identical to
the expression in (2) for b,[r].O

Corollary 2
Snlr] = Sp_alr] - p" " + spoa[r — 1] cprh (p—1)+sp_1[r—2]- (1 — pr’l’”) (4)

Proof 5 Proof is similar to the Theorem 1, but we have to consider the fact, that some of
the conditions of Lemma 1 can’t be satisfied. Probability, that E has rank r, under condition,
that E' has rank 7 — 2 is equal to p; = (1 — p"~17"), because it is possible, if and only if the
statement of the first item is fulfilled.(If the last row is not in the linear span of first n — 1
columns (without last elements), then due to the simmetry the last column is not in the linear
span of first n — 1 rows (without last elements))

Probability, that E has rank r, under condition, that E' has rank r — 1 is equal to py =
p" "t (p— 1), because it is possible, if and only if the statement of the third item is fulfilled
and e # ey .

Probability, that E has rank r , under condition, that E’ has rank r is equal to p3 =p" ™",
because it is possible, if and only if the statement of the third item is fulfilled and e = e;. We
have:

Sp[r] = Sn_alr — 2] - p1+ Sp_a[r — 1] - p2 + Sn_1lr] - p3-

Substituting p1, p2, p3 with found expressions we obtain the required equality. [
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Corollary 3
Su(@)=("+z-(1—q)-¢" ' —¢""2°)Sur(z-p) +2° Spoa(x) =
= ¢ (1—2)-(g+x)- Spa(z-p) +2°- Sy a(x). (5)

Proof 6 Proof is similar to the proof of the Corollary 1. Consider the coefficient of x" in the
left and right hand sides. In the left it is equal to s,[r|, and in the right to ¢" " - sp_1[r] + (1 —
Q) ¢ Spa|r =1+ (1 —q¢" ") s, 17 — 2. Required equality is the result of Corollary 2. O

Due to the equalities B,(z) = 2" - T,(1/z) n S,(z) =2a™- F,(1/z), we obtain
e Tu(@) = (g o —1) (= 1) sl ) +2- (2 —1) - Tos(o-q) + Tar(z),  (6)

T Faw) = (@ = 1) (¢- 2+ 1) - Fr(a- q) + Faoa (2). (7)

Define formal power series T, F' from the following equations:
T(x)=(q-x—1)-T(x-¢")+2-T(xq), (8)

F(z) =(qg-z+1) - F(z-q). (9)

They are obtained from(8), (9) by replacement of 7,,,7,-1 and F,,F,_; by T and F
respectively.

Denote f[r] and t[r] as coefficients of 2" in F(z) and T'(x), respectively. Obtain them,
considering coefficients of z” in (8), (9):

2.r—1
q

] =t —1] - 4 10
Pl =t =1 (10)
¢ _ flr—1
— —1]- = . 11
fi =gt —y- 2 = (1)
Whence we obtain the expressions:
4.2 kK2 .k
q-T q T q T
T(z)=t, (1+ + +.+ +...), (12
R A ([l A ([ R O (o ) ERR
where we set t, = (1—q)(1—¢?)...(1—¢~)....
Flz) (14+——+ i +o.+ - +.o, (13)
T)=cq- ),
! p—1 (p-1)@*-1) (p—1E*—1)...(0F 1)
where we set ¢, , such that F(1) = 1. To find ¢, we prove auxillary Lemma.
Lemma 2 . .
EiﬁoH}ﬂpj—_l = Hﬁom (14)
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Proof 7 Let prove, that

1 2 1 1
Efkoﬂm =S M (p9+1 — 1) ' = (27 — 1) (15)
by the mathematical induction. Base case for k =0, 1+ ﬁ = p%l . To prove the inductive
step note the following equality:
2 1 1 2 1 1
L ) T - e ) T 1)
pi2+2-k+3 1
WP — 1) T (20— 1)

, 1 1 , 1 1

ey B0 B oy gy

Now with the help of induction hypothesis:

1 .9 1 1
—0 I (p7 — 1) =1 Ty (p?7+1 — 1) H?;i+1(p2.j —)

1 1
tm———t e =
L2 — 1) IGEP( - 1)

From (16) with i =0 we obtain:

' L 1 p 1
= Efflpﬁ ) : . . : + ' ' . n
T I 1) T - 1) T (Rt — 1) T (- 1)
p k1, i2 1 1
H?:kfg(p] -1) 2 H?ZO(pZJ—&-l —1) H;c:l-i—l (p?7 — 1)
4
P ! i2 1 1
+ + Z?:127

T2 (p2itt = 1) I (p?7 — 1)
With the help of (16) with i =2,...,1 —1 we get:

525 (p2itt — 1) T2 (p2d — 1)

| 1 1
==y : : : : +
TR (pt = 1) T (p2a - 1)

l2

p 1 I .5 1 1
' . ' + Zii LN . . _ ‘
WA — 1) W o — 1) 7 I 1) IR - 1)
And in the result:

+

1 1

:...:Z»”piQ- : . .
I (pritt — 1) TR (p2d — 1)

In the left side of (15) are partial sums of the series from (14). And in the right:

1 1 1

Sk i2 > pk+1)? : .
”L—lp p H?ZO(p2ij+l _ 1)

077 = 1) 1)
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Zk+l i2 X 1 . 1 _
M_o(p?7 ! = 1) I (p27 — 1)
1 1 . 1
(k+1)2 (k+1)% vk (B41)2—42
B ) R NV TG — 1)
< plFH? 1 (14 kD),

Iy (p*9 1 — 1)

Whence we obtain, that expression in the right side of (15) tends to the right side of (14).
Lemma is proved. []

Therefore ¢, = (1 —q)(1 —¢*) ... (1 —¢*>*1)..
Using (2) and (4) and equalities ¢, [ | = by, [ ], sn[r] = fuln — 7] (or equating coefficients
of z'™ in (6), (7)) we obtain:

talr] = " Muar =1 = ((q+1) - ¢*" —=2-¢") tpa[r] +(F"2=2-¢" P+ 1) -ty [r + 1], (17)
falrl=q" - foalr =1+ (1 =q) - ¢ - fualr]+ A=) - fualr +1]. (18)

Consider the ratios fl[r] = ’;Z[[:]] and t;[r] = t,f:]} .

Lemma 3 For each value of i f;[r],£:[r] do not increase.

Proof 8 We will use mathematical induction on i. Base case: i = 0 we obtain: f;[r] = f;[1] =
0,7 > 0. Consider the induction step.
Let fiq[r] = A, fioi[r+1] = B,B < A. We have:

Rl =Flr+1] = filr =1 -q" - fIr =1+ filr] - (1 _Q)fgi"] flrl+ filr+11- A= ¢ ) - flr + 1]
Sl fI 1] (1 —g) g f[7”+1]+fi[7”+2]'(1—qr+2)‘f[7”+2]>
flr+1] g

LA =14 A- (=g ]+ B- (=) flr+1

g flr]
A S+ B (1=q) g fr 1+ B (1 =g flr+2] _ g
flr+1] '

From (7) multiplicating by x—1 and considering coefficients of "' we obtain equality f[r] =

q ‘}J:[T' — U+ (=) g flrl+ (L= g™ - flr +1] and using equality (11) Tl =pr+' =1
we nave:

qr+1
f:(A—B)(qr'(pT—l)Jr(l—Q)-q’"—pm_l

) = 0.
Step is proved. Proof for t;[r] is similar. O

Statement 2 t,[r|, f.[r] converge to the t[r], f[r], when n tends to the infinity.
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Proof 9 From Lemma 3, (17) and (18) we have:

mw:u—m-ﬁﬂm+u—@-a%5ﬂum<ﬁ£@L

601 = =g+ 1) =2 60+ 0= 1 e[ < 654D
therefore 1,[0] and f,[0] decrease according to i, and hence converge to some limits f and t,
hence t,[0] and f,[0] have limits. Now, using mathematical induction on r, we will prove that

tolr] and f.[r] converge to some limits. Base case for r =0 is proved. Let prove the induction
step. From (17),(18) we have:

(1 - qr—H) : fn—l[T + 1] = fn[r] - qT ’ fn—l[r - 1] - (1 - Q) : qr ’ fn—l[r]
(@ =2+ 1) tanalr H 1 =[] = ¢ [ = 1+ ((a+1) - ¢*" = 2-¢7) - tua[r]
Whence , convergence of the right hand side, we obtain that left side also converges. Step is

proved. Limits satisfy (8) and (9), hence are equal to ¢y - t[r], co - flr] Because of the choice of
tq and c, constants are equal to 1. [

Following results were computationly obtained, if p = 2: ¢[0] ~ 0.2887881,¢[1] ~ 0.5775762,
t[2] &~ 0.1283503, t[3] ~ 0.0052388 . Also we have t[i] < c¢-¢* , for some constant c.

Lemma 4 n 19
s ([Tl — )

[I-(1—¢)
Proof 10 We will prove using mathematical induction on n. Base case for n =0 t,[0] = 1.
Let prove the induction step, from (17):

talr] = ¢ taa[r =1 = (g + 1) - ¢*" = 2-¢") -ty [r] + (@ =2 ¢ 1)t [r + 1] =
using induction hypothesis:
S 1 ') PR S ) Y
Hi:l (1—14q") [I=  (1—-4¢)
e (M50 =g)? o (TS0 —g)?
50— IS0 q)
(=g =1=q"7") ((g+1) ¢ =2-¢")+ ¢ (1-¢"7") - (1—-¢""7)) =
o ([T - )
[T/ a—d)

talr] = ¢" (19)

=dq

+(q2-r+2 —9. q’l‘+1 + 1) -q

=dq
Lemma is proved. 1.

Statement 3 When p = 2 at a fized 1o not equal to 0 sequence t,[ro| increases, when
n=rgro+1,... and decreases in case rq=10.

Proof 11 From Lemma 4:
tn+1[r0] B (1 _ qn+1)2 1— qn + q2-n+2

tn[TO] (]_ _ qn-i—l—ro) o 1 — qn+1—r()

When ro = 0 we have ¢"™' + ¢*"*% < ¢, hence ratio is smaller than 1 and sequence t,[0]
decreases. When 1o > 1 we have ¢" 71770 + ¢*"*2 > ¢, hence ration is bigger than 1 and
sequence t,[ro] increases. O
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3 Distribution of stohastic variable (

Consider following stohastic process. On the zero step matrix Ay over Zy with size n X n is
constructed, each element of Ay is 0 or 1 with probability % With the help of elementary
transformations of the columns of matrix Ay we reduce it to the form where left columns
are linearly independent and the rest are zeros. On the first step we construct A; randomly
filling zero-columns of Ay, and reducing it to the form with corankA; zero-columns at the
end. Similarly we construct As, As...A;... filling zero-columns of the previous matrix and
reducing it to the form with corank zero-columns at the end.

Denote for ¢ = min{i|corankA; = 0} . Constructed stohastic variable is identical to ¢ from
[2]. Note, that if corank of A; is equal to k, then considering columns of A;,; in basis, which
contains first n — k colums of A;, we obtain that corank of A;,; is distributed as corank of
random matrix with size k x k. Denote for p,, = P(¢ = k). Then p,0 = t,[0],

P = 2iqtnlt] - flig—1- (20)
Now we obtain lower and upper bounds for .

Where ¢ is number of zero-matrices, and j is a corank of the first none-zero. Then p,; =
(l)kﬂ
5 .

3 ol 9 gl k—
= — .« (— —E —\? — 7’:
3 1 9. ((2)F — (L)F 9 1 15 1
G e e g
(5= 16)
Similarly we have

7T 1, 105 1., 511 1,

ek =15 )~ 555 (46) T gea0 i)

Now we obtain lower and upper bounds for p,x,n > 3. We do this by selecting the first
moment when corank is lesser or equal 3. From Statement 3 o = ¥:2,¢[i] - is upper bound for
probability of random matrix to have corank greater than 3. Using Statement 3 we obtain:

fnge < (@) - 14[0] + SE0S_ (@) - t]5] - pjpioa <

Replacing ji1 i, ft2.k, f13,5 by obtained values and using known tresholds for ¢ we have :
Lk Ly Lk k
< 0.75001 - (5) —0.58599 - (E) + 0.14156 - (53) + 0.00207 - ()", (21)

a=1- %% t[i] <0.0000467,
pnge = (ta[4])" - (0] + DGR (tal4])" - tald] - pjp—ima >

Replacing ju1 i, flok, ft3 5 by obtained values and using known thresholds for ¢ we have :

1 1 1
> 0.72580 - (5)’“ — 0.50404 - (E)k +0.09126 - (——)F —0.02425 - ( )k (22)
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hence when k& > 2 we obtain:
(23)

1 1 1
)F = 0717924+ (5)" < pne < 0.75001 - (5)"

1
0.72580 — 0.50404 - —) -
( 64) (2
(13) , auxillary value, which we will

Now we will found bounds for ¥, = =X, In(P(¢ < 1))

use later. From (23):
1
1 —0.75001 - (5)’“ <1-P(>k)=

1 1
<1 -0.717924 - (5)’“, k>2,

= P(C <= k) < 1—(0.72580 — 0.50404 - =) - (5
0.62036 < P(¢ < 1) < 0.62744. (25)

Then when k£ > 2 we have:

S = 52, n(P(C <)) = mee, LTS Y _ seo ZEkl1 2 f@ <i)y

1=

We obtain the bounds:
- (0.717924 - 2%)9

2, (0.717924)7 - (L)
J j- (=)
> 2-(0.717924) ! + 1 (0.717924)* ! (26)
- ' ok =3 M 4k’
¥ (0.75001)7 - (L) 0.75001 - &)J
J J-(1—=5)
1
- (27)

14
< 2-(0.75001) - = + = - (0.75001)2 - — -
(0-75001) - 3+ 5 - (75001 e~ T 5 75001) - &

4  Expected value and distribution of auxillary stohastic

variable 7
There was shown in [1] , that for » > ¢ — 1 > 0 fulfillment of inequalities

CTgt_]vCTflgt_lyCT‘*QSt_27"'7CT‘7t+l<1

is sufficiently, for constructing approximation with number r 4+ 1 with the help of coefficients

of approximations with numbers r,r — 1,...,r —t. For simplification we denote

§1=Cryeo &t = Gttty -
Let:
O=min{t>1: <t—-1,§,<t—i+1,i=2,...t},

Fe=min{t>1:6<t—i+1i=1,...,1t}.
Let TI(7) = IIi_, P(£ < k),I1(0) = 1, and f(s) is generating function of distribution of .
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Lemma 5
P(r=k)= En,aieNU{O},alJr.--Jran:k(_1)n_1 I (a;), k€ N (28)

Proof 12 We will prove using mathematical induction on k. Base case for k = 1: P(r =
1) =P <1)=1I(1). Induction step:

k—1
P(r=k)=P{& <k—it+1l,i=1,2,.. K\ J{r =j §u <k—j—itli=1,2,... k—j}) =
j=1

(it is true, that & < k—i+ 1,0 =1,2,... k, but it is not true that 7 < k.)
= TI(k) = XTIk — 5) - P(r = j) = T(k)+

+E§;11:1(_H(an+l)) ’ EnyaiENU{O}ﬂzl+~~+an:k*an+l(_]‘)n_l ) H?ZIH(M -

= En,aiENU{O}ﬂl—l—...—&-an:k(_1)n_1 ’ H?:IH(CLZ)

Lemma is proved. []

Statement 4

1 .
——— =272,I(7) - s", 0 < s < 1 29
Proof 13 Using the fact, that 1 — = = 52, (—=1)""" - ' we obtain:

1

1 . .
- = 3% (1) (82, T0(5) - s') =
1 + Efiln(l> . gt j—l( ) ( =1 (Z) S )

- E.?ilZn,aieNU{O},a1+---+an:k(_]‘)n_l L 1 (as) - s = f(s)
when 0 < s < 1. Whence we obtain the required equality. ]

Theorem 2

2.382189 < M7 < 2.484705 (30)
12.797192 < M7* < 14.300803 (31)

Proof 14 Let II(co) = 1132, P(§ < i) . Because
3 = —In(Il(00)) + In(11(i — 1)), (32)

then using (25), (27) (26) we obtain 0.402462 < II(co) < 0.419781. We have, that if s — 1
then right hand side tends to infinity, hence f(1) = 1. Then, multiplicating both parts of (29)

by 1 — s we have: .
ﬁ = 1+ X%, (I0(3) — (i — 1)) - ', (33)
When s — 1 we have:
()™ = . (34)

Hence we obtain lower and upper bounds for Mt = f'(1): 2.382189 < Mt < 2.484705.
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From
(1= 8) - £3%(I1(3) — T1(00)) - s' = 1 — [1(00) + £, (I1(3) — I1(i — 1)),
we have: i gy
O = 3 (T1(3) — T1(o0)) - '
reducing left side to the common denominator and proceeding to the limit, when s — 1
3 At = S0 - 11()
Now from (32) and (34) we have:
ff)=2- (1) - (B2 exp() — 1) (35)

From (34) and (35) and using Taylor series for exponent:

P =27 () - 1)+, B

From (26) and (27) we know, that ¢;-27" < 3 < ep-27 | where ¢; = 0.71792, ¢, = 0.77884..
Now from (30) we obtain inequalities

f"(1) > 6.58527 + 4.764378 - ¥13° ,(0.71792 - 271 1-0.5- (0.71792)% - 47F+1) > 10.415003,

(0.77884)3 - 8~k+1)
6-(1—(0.77884)3-0.25)

F7(1) < 7.3781084-4.96941-3° , (0.77884-27 71 40.5-(0.77884)-4 k11

< 11.816098.
M7% = f"(1) + (1), using (30) we obtain required inequality. U]
Now we will obtain bounds for values of all derivatives. Let v(s) = %, g(s) =1—=%2,11(i —
1)- P(¢ >1). From (33)

1 — .
1_—@:1_2$§1Hi1'P(C>i)~s’,
v(s)-g(s) =1.

Differentiating this equality n times:
1

=2 (5) " (s) - g9 (s)
g(s)

Note, that ¢ (s) <0 < g(s), when 0 < s < 1,i > 1. Hence, if for some functions g;(s), g2(s)

the following statements are fullfilled:

91(s0) = g2(50) = g(s0), (37)

7" (s) =

(36)
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9\ (s0) < 9P (s0) < 657 (50) < 0,7 > 1, (38)
then . .

(—)D(s0) <7D (s0) < (=)D (s9),7 > 1. (39)

g2 [

We take ¢; equal to o; — ﬁ—g,ai = g(so) + 1?—:0 Jfor satisfiyng (37) and 5, = 0.75001, and
2 2

Po == 0.28893 < 0.71792 - II(0) ,is sufficient due to the defenition of g(s) and (24) to satisfy
(38) . Then

1 1—3 2.8 -an
(E)(n)(so) = (m)(n)|sso =n!- o 2 (o _%i)oﬁ - 50)"+1’n > 1.
We obtain, taking «;, 5;, so € {0,1}
0.22416 - (0.64446)" - n! < ~™(0) < 0.42857 - (0.87501)" - ! (40)
1.37657 - (2.37657)" - n! < ™ (1) < 1.95908 - (4.72711)" - n! (41)

Whence we obtain bounds for derivatives of function f(s).
1.37657 - (2.37657)" 1 - n! < f™(1) < 1.95908 - (4.72711)"

Now we will find bounds for P(r > n).

P pum— pu— pu— _
(r=n) n! (n—1! n!’
hence:
~ (@)
P(1T > 1) S (42)
1!
Now from (40) we obtain:
0.22416 - (0.64446)" < P(7 > i) < 0.42857 - (0.87501)". (43)

Here we can obtain more precise upper bounds for P(T i), using polynomials of higher
degree. For example consider function gi(s) = a—f-s— 25, where a = 1+(5 0 = 0.47060, 8 =
2
0.14434 = 0.37964 — 0.23530 > ¢’(0) — 0.5 - 0. Then ¢,(0) = ¢g(0) and §™ < g™, and hence
7™ (0) < g%(n)(O). From the other side:

B 2—s ! n Co
Gi(s) B-s2—(2-B+a)-s+2 s, —5 sy—s

2—s51

B-(s2—s1)”

2—59

B-(s1—s2)

wher si, s, are roots of the polynomial in denominator, ¢; =
s1 and sy we obtain:

Ccy = Finding

A0) < nl-(c1 - 57" 4 ¢o - 53™) < nl(0.52487 - (0.78807)" 1 4 6.40328 - (0.09157)"1).
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5
1-3
1 2—3s

Gi(s)  2—1.7593-5+0.14435 - 52 + 0.21115 - &

we have:

Similarly taking gi(s) =a — -5 —¢c-s> —

and upper bound:

P(r>n) = 7(2,((»

< 0.41973 - (0.76773)" + 0.19412 - (0.07398)" + 0.38590 - (0.18590)". (44)

5 Expected value of stochastic variable ¢

Now we will found lower and upper bounds for expected value of 6.

Theorem 3
3.63148 < MO < 3.84696 (45)

< M <
22.33992 < M6H* < 29.58587 (46)

Proof 15 Let w be an event, in which (¢ = i. Then, if ( <1 —k+ 1,k =2,...,1, then
0 =i+7=r7(w)+ 7, where 7,7 are variables identically and independently distributed, in
other case 0 = 7. We have:
MO =Mr-(14+3X2,P(¢C=1)-1I(i —1)) (47)
M6
e >1+P((=1)+P(=2)-1I(1)+ P(¢ =3) - TI(2) + P(¢ > 3) - TI(c0)

.

Méo

T <1+ P(C=1)+ P(C=2)- (1) + P(C = 3) - 11(2) + P(¢ > 3) - 1(3)
3.63148 < 1.52443M1 < MO < 1.54826 M T < 3.84696

Now we find bounds for M6*. Let I, be a stohastic variable equal to 1, if 3k|¢; =k, <
k—i+1,i=2,...,k and 0 in other case. Then 0 = 7+ I - 7. Note, that I and T are
independent variables. We have:

MO*=M7*+2-M7r-7- L + M(7-1)* =
=Mr*(1+MI)+2-Mr-1, - M7t =M7m*(1+ ML) +2-Mr-M7-1 (48)
Note, that 1+ M1, = %. Hence, it’s enough to find bounds for Mt - I .
Mr-I =%2i-P((=1)-1I(: — 1).
Using (21) and (22) we obtain:

1.
M7 - I < £, 0.75001 - (5)' = 1.50002 (49)
1., 1 ..
M7 Iy > 525+ (0.72580 - (5)' = 0.50404 - (1)) - TI(00) = L41575 - (M7) ™ (50)
At the end using (30), (31), (49),(50), inequalities for MI, and equality (48) we have:

22.33992 < M6? < 29.58587
0.

1324



Bectauk TT'Y, 1.15, BbIm. 4, 2010

6 Upper bound for algorithm’s memory requirements

For the work of the algorithm from [1], we have to keep 6 previous approximations to construct
the new one. Further we talk about probabilities under conditition of successfully completion
of first r steps, where r — number of stored approximations.

Theorem 4 For successful execution of the algorithm with probability 0.99 on matrices of size
2° and block-size 2, where (s — k) > 10, is sufficient to keep 2.622407 - (s — k) + 18.805443
Previous approrimations.

Proof 16 We will find the number of approximations n for successful execution of | steps of
algorithm with probability bigger than 0.99. This probability will be bigger or equal to
1—1-P(0>n). Hence it is sufficient, that P(0 >n) < %2 . From (21) and (44):

PO >n)=P(r>n)+S'P(C=1i)-T(i — 1) - P(T >n —1i), (51)

P60 >n) < P(r>mn)+0.33866 - P(T >n — 1)+
+0.47059%7 27" - (0.41973 - (0.76773)™ " 4 0.19412 - (0.07398)™ " + 0.38590 - (0.18590)" ") <
< 0.90382 - (0.76773)" ' + 0.06601 - (0.07398)™ " + 0.33866 - (0.5)" ' + 0.23154 - (0.18590)" .

Number of steps of the algorithm is equal to | = 2°7%. n will be large, so P(f > n) <
0.90383 - (0.76773)" " | and it is true, if n = 2.622407 - (s — k) + 18.805443 . [

Theorem 5 For successful execution of the algorithm with probability 0.99 on matrices of size
2° and block-size 2%, where (s — k) > 10, is necessary to keep 1.3 - (s — k) + 6.22 previous
approxrimations.

Proof 17 Let r be the number of stored approzimations. Then {6; > r} and {0;+, > r} are
independent events. Than probability of successful execution of the algorithm is not bigger than

1—P#>r)- ? Using (51), (22) and (43) we obtain:
P >n)>P(r>n)+0.33139- P(t >n—1)+0.05947 - P(T1 >n—2) >

> 0.22416 - (0.64446)" - (1 + 0.51421 + 0.14318) = 0.37152 - (0.64446)".
Hence, when r <13-(s—k)+6.22, 1—-P@>r)- ; <0.99. O

7 Computed results

Obtained probabilities can be computed for n = 64 using computer. Distribution of coranks
of matrices with size non-greater than 64 we compute using formulas from the first part.
Functions fi4 we compute from (20), up to k < 64. Further members of the product from
the right side of formula M7 = (II(c0))™! can be discarded, because their product differs
from 1 lesser than =~ 27%3. We have M7 ~ 2.39. To compute M6 we use (47): MO ~ 3.67.
Then using (29) and (51), we compute P(7 > k), P(0 > k) and obtain that, for £ > 30
P(r > k) ~ 0.13816 - (0.75471)*+1, P(6 > k) ~ 0.26795 - (0.75471)**! | hence for k = 60 with
probability bigger than 0.99 algorithm will be successfully executed. 60 will require less than
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30 gigabyte of memory.

In the proof of theorem 4, expression 1 —1[- P(# > k) was used to find lower bound for
probability of successful execution. But P(f > k) will not be summarized, and this probability
will be higher. Also on the first step, because of the small size of approximation polynomials we
can keep much more approximations. Compute the probability, that using m GB of memory,
algorithm for matrix of size N and block-size n > 64 will be successfully executed. We will
fix K - maximal number of kept approximations. Let g[i|[j] be the probability of successfully
execution of i steps with the condition 6, = j. ¢[0][0] = 1.0. Let find g[i][k]. Memory
restriction on the number of kept approximations /; on the i-th stepis i—1+i—2+...+i1—1[; <
m;—zj?’ (i — (ki +1)) < % , whence find ;. Let {; = min(l;, K). Then run through £ =1,....1[;.
If 8; = k one of the mequalities from the definition of 6 has to turn in equality. If it is not the
first inequality, than let it be with number k& — j 4 1. Then probability of this event is equal to

P((=4)-T(G—-1)-(P(( <k=2)-TZ} P <i—1)=PO<k—jlG <k—ii=2,...k—j))

1=7+1

. Note, that for i —j+ 1 < h < 7, will be sufficient memory, and if it will be sufficient fori — j-
th step, it will be sufficient for all steps with numbers from t—k+1 to i—j— 1. Hence
0;—r < l;,_; — j, summarizing obtained probabilities ¥ _ 977 gli — 4][2] we obtain the answer in
this case. In the case when (; =k — 1, we will also focus on the case of first equality:

P(C=k—1)-(S5IT(z = 1) - P(¢ = 2) - TIZL  P(C < 5 — 1) - S5 gli — K][p)+

j=z+1 p=0
+II(k = 1) - P(¢ = 0) - X5_og[i — ][p]).
Now we compute for % steps, under condition of successful execution of first g =~ 100 steps
we obtain the probability of successful execution of the algorithm. Using this algorithm was

obtained, that for matrix of size N = 220 and block-size n = 2°¢ is sufficient m = 26 GB of
memory, and block-size n = 2! m = 650 GB of memory.

8 Conclusion

Algorithm from [1] was known, but there wasn’t (or was but not very accurate) theoretically
estimates of its efficiency. In this work the lower and upper bound for the expected number of
previous approximations is obtained:

3.63148 < M0 < 3.84696.

In the previous works only upper bounds were obtained. In [1] it was some constant C
independent from the size of matrix. In [2] the result M6 < 7.233 was obtained. Logarifmically
depended on size of matrix lower and upper bounds are found for memory requirements. There
were not any similar results before. Method proposed by A.M. Zubkov was used to obtain the
results.

Using this results it can be shown that the algorithm from [1] is better (for exmaple by number
of operations and memory usage) than other existing algorithms. Distribution of coranks of
random (symmetric and none-symmetric) matrices were already known(papers: [3],[4]), but the
method proposed in this paper is new and may be used for similar calculations in other cases(for
example anti-symmetric matrices).
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OILIEHKA OYKUMUJIAEMOI'O BPEMEHU PABOTHI I HEOBXOJINMOTI'O
OBbEMA IMAMSITU OJ14 YCIEIITHOT'O 3ABEPIIIEHIUS AJITOPUTMA
PEIIIEHU YA BOJIBITINX PA3PSIYKEHHBIX CUCTEM JIMHEMHBIX
YPABHEHUN

(© Bacwnuauii BagumoBuu Acrtaxos
MockoBcknit rocymapcTBeHHbIH yHUBepcuTeT uM. M.B. JlomonocoBa, Jleannckue ropsr, 1,
Mockga, 119991, Poccus, kadeppa Teopun duces, CTyJIeHT MEXaHUKO-MaTEeMAaTH4YeCKOTO
dakyabrera, e-mail: astvvas88@mail.ru

Kmouesnie caosa: pa3psaKeHHbIE IMHERHBIE CHCTEMBI; anTpokcnMarnun [lajge; pacopee-
JIEHNE KOPAHTOB.

B pabore paccmaTpuBaercd aJrOpUTM PeIleHns OOTBbIINX PA3PeKEeHHbIX JTUHERHBIX CH-
CTeM HaJ Zo, WCIOJB3VIONINN MOCTPOEHNe MAaTPUUHBLIX anmpokcuMannii [Tame. [Tpes-
ToOJIaraeTCd, 9YTO JIEMEHTBHI aAllIIPOKCUMAITMOHHBIX MHOTOYJIEHOB CTATUCTUYICCKN HE3aBU-
CHMBI U paBHOMEPHO pacupemesenbl. CTPOUTCs METOH IJIsT HAXOXKIEHHUs paclpemese-
HUI KOPaHT'OB JJIA CﬂyqaﬁHbIX CIMMETPUYIHBIX, KOCOCUMMETPUYHBIX 1 O6quHbIX MaT-
puil. HaroTcs OIleHKH cBEPXY W CHU3Y Ha CpeJIHEe UHUCI0 TMPEABIIYIINX alllIPOKCAMAITAT,
HEOOXOAMMBIX [T MTOCTPOEHUsT HOBOHM anmmpokcuMaIrmu. BobigBiera jgorapudMudecKasd
3aBUCUMOCTD JIJId JJOCTATOYHOTO YHCJa XPAHUMBIX AllIPOKCHMAITNH Ha KayKJOM IIary,
JITsT YCIIEITHOTO 3aBepIleHuns aaropurMa ¢ BepositHocThbio 0,99. Cpejnue 3navenus u
HEOOXOAUMBIH 00beM IMaMSITH BBIYUCICHBI IIPU IOMOIIN aJTOPUTMA, PE3YIbLTATHl TaKKe
IpUBEIEHBI B pabore.
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UDC 519.688

PARALLEL COMPUTATION OF LAGRANGE RESOLVENTS BY
MULTI-RESOLVENTS

(© Philippe Aubry, Annick Valibouze
LIP6, UPMC, 4, place Jussieu, F-75252 Paris Cedex 05, France,
e-mail: Philippe. Aubry@upmec.fr, Annick.Valibouze@Qupmec.fr

Key words: Lagrange resolvent; Galois group; galoisian ideal; triangular ideal; double
class; parallel computation.

The goal of this paper is the parallel computation of Lagrange resolvents of a univariate
polynomial. The computation of Lagrange resolvents of a univariate polynomial has
significance for Galois Theory. Since Lagrange’s algorithms, many other algorithms
for computing some particular resolvents, called absolute, were developed from the
fundamental theorem of symmetric functions. The algebraic algorithms for non absolute
resolvents are few and recent because they use galoisian ideals that were introduced
recently. However these algorithms become time and space consuming when the degree
of the polynomial increases. This motivates their parallelization. Rennert proposed a
multi-modular method for computing absolute resolvents of polynomials with integer
coefficients. We show that the same techniques can be extended to any resolvent.
This method is naturally parallelizable. Moreover, we give a decomposition formula
of resolvents which makes possible another level of parallelization. This leads to an
algorithm with a doubly parallel character.

1 Introduction

The Lagrange resolvent of a univariate polynomial f is a fundamental tool in Galois theory
(see [1] and [2]). It is a univariate polynomial obtained from a multivariate polynomial
transformation of f. Its factors are used to describe the action of the Galois group on another
group stabilizing the multivariate polynomial © used for the transformation; hence, they
determine the Galois group of f by using matrices of groups; moreover, the evaluation in
© of any factor of the resolvent produces a minimal polynomial of a galoisian ideal (see [3]).
The parallel method that we describe is inspired by Rennert’s work (see [4]) for the restricted
case of the resolvents relative to the symmetric group, called absolute resolvents. Nevertheless
Rennert’s method cannot be adapted automatically to the general case of resolvents relative to
subgroups of the symmetric group. The reader can refer to Example 1 that illustrates one of
the simplifications existing when the reference group is the symmetric group. This paper does
not only extend to any resolvent the multimodular parallelisation proposed by Rennert, but
presents another level of parallelisation thanks to a new decomposition formula of resolvents
given in Theorem 1. Moreover, the theoretical study that leads to this decomposition, together
with the description of a strategy for the parallel computation, bring to the subject greater
clarity.

Section 2 introduces galoisian ideals and Lagrange resolvents with some properties. Section
3 establishes Theorem 1 in which the resolvent splits into factors corresponding to double
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classes of conjugacy. In Section 4 the polynomial f is supposed to be reducible. We construct
the Lagrange resolvent of f from the Lagrange resolvents of its factors following Theorem 1.
These latter, called multi-resolvents, may be computed in parallel. Section 5 applies the method
of Section 4 to the important case of irreducible (or reducible) polynomials over the rational
field. By computing a common denominator of such a polynomial f, we can assume that its
coefficients are integers. Since the image of f modulo p is reducible for many prime integers
p, we can perform the computation of a Lagrange resolvent of f in F,[z] by the above parallel
computation with multi-resolvents. The Lagrange resolvent of f in Z[z] is finally lifted from
those in F,[z] by using the Chinese Remainder Theorem. This multimodular method is clearly
“doubly“ parallel since the Lagrange resolvents of f in F,[z] are computed independently.
Finally, Section 6 is devoted to the parallel algorithm description.

Throughout this paper, k is a perfect field, k& an algebraic closure of k, f a square-free
univariate polynomial of k[z] with degree n and o = (aq,..., ) in &k is a tuple of the n
distinct roots of f.

General notation For a variety V C &, the ideal Id(V) of V is the set of polynomials
with coefficients in &k vanishing on each element of V. Let I be an ideal of k[zq,...,x,], the
algebraic variety V' (I) of I is the set of point in k" where every polynomial in I vanishes.
The symmetric group of degree n is denoted by &,,. Given two ideals I and J, the injector
Inj(I,J) of I in J is the set of elements of &, sending each element of I in J. The subset
Stabs, (I) := Inj(I,I) of &, is a group, called the stabilizer of I in &, (in literature, it is
also called the decomposition group of I). For H < &, and 0 € S,,, H> =cHo '.

2 The Lagrange resolvent

The results not referenced or proved can be found in [5] where galoisian ideals are introduced.

The maximal ideal of «-relations 9t = Id(«) has as stabilizer
G = Stabs, (M) ,

which is the Galois group of o in k.

By the natural k-morphism z; — «; from klxy,...,z,] to klag, ... an] = k(aq,. .., a,),
the field k(aq,...,a,) of the roots of f is isomorphic to the quotient ring k[zy,...,z,|/9N.
The goal of the constructive Galois theory is to construct 9 and to determine the Galois group
G . One of the methods, called GaloisIdeal algorithm(see [5]) is based on a construction of an
ascending chain

]1CIQC"'C9:R

of particular ideals called galoisian ideals, defined below. For the first ideal I, it is always
possible to take the ideal 1d(S,.a), called the ideal of symmetric relations, which is generated
by the Cauchy moduli, a triangular Groebner basis obtained by divided differences from the
polynomial f. The resolvents have a double interest: construct a generator of I;,; from I;
and simultaneously exclude some groups to be the Galois group of a by using the matrices of
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groups. More generally, the resolvents are intensively used in numeric and algebraic methods
for computing the Galois group alone.

Let us define galoisian ideals and their injectors. Let L be a set of permutations of &,
such that L = GL (i.e. G < L when L is a group). The ideal I of the variety L.« is called
a galoisian ideal, L is its injector in the galoisian ideal 901 ; the algebraic variety of [ is
V(I) = L.«. Note that G is the injector of 9 in itself and M = Id(G.«0) = Id(a) .

When the injector L of [ in 91 is a group, the galoisian ideal I is said pure. A galoisian
ideal is pure if and only if L equals the stabilizer of I in &,, ; it is itself equivalent to the
inclusion of the Galois group G in this stabilizer. When [ is pure V() = L.§ for each
B € V(I). It is proved in [6] that a pure galoisian ideal is generated by a separable triangular
set of polynomials; such an ideal is said triangular.

Definition 1 The L -relative resolvent of a by O € k[xq,...,x,] is the polynomial

Roro= [] (z—¥(a))

vel.©

When I is pure, the resolvent does not depend on the choice of o in V(I) ; it thus can be
denoted by Rg ;.

The characteristic polynomial of the multiplicative endomorphism O induced by © in
klxyi,...,2z,)/I is a power of the resolvent :

card(H
Xe, = R@,I( : (1)

where H < L is the stabilizer of © in L (© is called an L -relative H -invariant). By linear
algebra xg ,; belongs to k[z]. As the field k is perfect, Rer lies also in k[z]; moreover, if it

is square-free then Rg ; is the minimal polynomial of C:), the square-free form of xg ;.

In next section, we will apply Sentence 2 below to a subgroup K of L in order to compute
L -relative resolvents. For this reason, we prefer to use respectively K and J = Id(K.a) instead
of L and [ = Id(L.a)) in the rest of the present section.

Let K < &,, and 7 € G,,. Then we have

IAK™ ' (r.a) =7 Td(K.q) . (2)
Indeed, for each 7€ &,,:
Id(t7'K7.(1.0)) = [d(KT.0) = 7 '.Id(K.0)

Sentence 1 Let K < &, J=1I1d(K.a) and 7 € &,,. The galoisian ideal 7= .J is pure with
stabilizer K™ if and only if G < K , where G is the Galois group of «.

Proof 1 The Galois group of 7.« is the conjugate G™ ' of G, and the condition GT ' < K™ '
is equivalent to G < K . From Identity (2), the group K™ and T.a define the galoisian ideal
tJ.

As K™ isa group, the galoisian ideal 77 .J is pure with stabilizer K™ if and only if the
Galois group of T.a is a subgroup of K™ ' (see [5]); this is equivalent to G < K .
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Sentence 2 Let K < 6,,, J=1d(K.o) and T € &,,. Assume that the Galois group G of «
1s a subgroup of K . Then
Re 1.5 =Rre,

Proof 2 The characteristic polynomial of © in k[xy, ..., x,]/7 1. J is
Xor1s= ]| (x—00(8)
cek™ !

Jor any B € V(r=t.J) since, by Lemma 1, the galoisian ideal 77'.J is pure with stabilizer
K™ " . Thus, for any peV(tJ)

Re 1.5 = H (z —0.0(8)) (3)

=1
ceK /StabK_rfl (©)
Moreover,

Stab.-1(©) = {oc€r'K7|0.0 =06}
= 7 Ype K|t 'pr.®@=0}r
= 7 Ype K |p(r.0)=1.0}r
= Stabg(r.0) (4)

We can choose = 7.0 € V(r7'.J) = K™ '(r.q) (see Identity (2)). With the notations
p=T10or' and S = Staby(7.0), Identities (3) and (4) imply

Ro,-1; = H (x — 7 1p7.0(1.0))

pEK/S

= I c—rrorot)

peEK/S

= [l @-pr6)) (5)

peK/S
- RT.@,J

Remark 1 From Identities (3) and (5), the following equality can be deduced more generaly
for any subgroup K of &, :

[I @-c0@)= ] @-r6)e) (6)

cekT 1 gm ! pEK/S

forany € V(r~'.J) where 7 € &, and S = Stabk(7.0).
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3 Double classes and resolvents

We are interested in computing the resolvent Rg ;, where [ is a pure galoisian ideal of stabilizer
L. We show how a resolvent can be factored relatively to a double transversal. This can lead
to decomposing the resolvent into a product of resolvents with smaller degrees, in particular
when the polynomial f is reducible.

Following the notations of previous section, H < L is the stabilizer of © in L. Let K be
another subgroup of L. The relation Rx g =R defined in L by

oR7T if cHNKT#

is an equivalence relation. The class of ¢ is called a double class of L modulo K and H and
satisfies the following proposition:

Sentence 3 Let o,7 € L. Then o R7 if and only if T € KoH .

Let us assume that we know a double transversal
K\L/H ={m,...,Tm}

of L modulo K and H, that is a set of representants of the equivalence classes of R. We
thus have

L.O= OKQH.@ = OKQ.@
i=1 i=1
In order to decompose each term of the above union, we introduce the subgroups
H,:=KnNH"
of K for ie[l,m].

Lemma 1 Let 7, € L and H; as above. If © is an L -relative H -invariant then 7,0 is a
K -relative H,; -invariant.

Proof 3 For each permutation o of H;, there exists o' in H such that
07;,.0 = 10’7, '1,.0 = 1,.0 . (7)

Therefore ;.0 is invariant under the action of H; .

Now let 0 € K which leaves 7;.0 invariant. We show that o belongs to H;. From o1;,.0 =
7;-© we deduce that © 1is invariant under the action of Ti_IO'Ti. Then Ti_lO'Ti € H, in other
words o € T, HT; '

From Identity (7), we find by decomposing K according to a left transversal K/H; of K:
Lemma 1 ensures us that the set (K/H;)7;.© has the same cardinality as the set K/H;
(i.e. the produced polynomials are pairwise distinct). Indeed, if there exist two permutations o

and o’ of K such that 07,.0 = 0/7,.0 then o '¢’ is in H; because it leaves 7;.© invariant.
Then o and o’ belong to the same left classe of K modulo K;. Finally, we can write

1332



Bectauk TT'Y, 1.15, BbIm. 4, 2010

Sentence 4 Let K\L/H = {7,..., 7} and H; = KNrH7, ' for i € [1,m] ; we have

=1

where the union is disjoint.

Proof 4 Fquality (9) follows from identities (7) and (8). Moreover, assume that there exists two
permutations o and o' of K such that 07,0 = 0'7;.©. Then o1, € o't;H and consequently
7, € K7;H , that is contradictory with definition of the double transversal.

Sentence 5 Let H =Stab,(©), K\L/H = {n,...,7m}, K; = K, H; = KN H" and
H!=K;NH foriec[l,m]. Then

Ro; = H H (x — 01;.0()) (10)

=1 oe(K/H;)
= H H (x —0.0(7.)) (11)
=1 oe(K;/H])

with H; = Stabg (7,.©) and H| = Stabg,(©) for i € [1,m].

Proof 5 From Proposition 4, we express the resolvent as follows:

Ros = [ @ v

\I/G(K/Hl)ﬂ@

[[ =-om6()
K/H;)

1 oe(K/H,

T

I
=

.
Il

by Lemma 1. By the same lemma H; = Stabk(7;,.©) and one can easily verifies that H! =
Stabg,(©). Then Equality (11) follows from Remark 1.

The resolvent Rg is algebraically computable by the algorithms in [6] or [7] based
on successive resultants when a triangular basis of I is given. Anyway their costs may be
dramatically reduced if it is possible to split the computation in several resolvents relative to
galoisian ideals with generators of smaller degrees. By the independance of these factors the
computation becomes parallelisable. Following these considerations an effective decomposition
of Re  is given below.

Theorem 1 Let H =Stab(©) and K\L/H = {m,...,7m}. If G < K and if a triangular
basis of J = Id(K.a) is given, then for each i € [1,m] the resolvent Ry -1 ; is computable
and

Rej = HR@T_IJ HRTZ@J : (12)

=1
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Proof 6 Let J; = 7, '.J. If G < K then by Lemma 1, the ideals J and J; are pure with
respective stabilizers K and K™ . Therefore Sentence 2 and Relations (10) and (11) leads to

Identities (12). Furthermore Rg -1 ; is computable since it is expressed as a resolvent relative
to J. Z

4 Case of reducible polynomials and application to F|x]

As the goal of this paper is to compute the resolvent Rg ; by multimodular techniques when the
base field is Q, we will apply Theorem 1 to F,[z] for f reducible over I, . Consequently, in this
section the polynomial f is supposed to be reducible over k. In order to split the computation
of the resolvent Rg; we intend to determine a subgroup K of L containing the Galois group
G, and such that the triangular basis of the associated galoisian ideal J = Id(K.«) is quickly
computable.

Let f=fi--f-, fi € k[z]. For each i in [1,7], we denote by d; the degree of f; and by
G; the Galois group (over k) of «,, a d;-tuple of the d; roots of f;.

It is well known that there exists a conjugate G” of the Galois group G, 7 € &,,, such
that G7 < Gl

7777

..........

G<GY ,<L. (13)

We first show how a triangular basis of the ideal I' = Id(GY_ ,.a) can be obtained. Let
My,..., M, be the » maximal galoisian ideals of the respective q;-relations. For each i €
[1,7], we can rename the variables appearing in the triangular basis of 90%; as a tuple y;, and
consider the ideal 9, in the ring k[y;]. In this context, let us denote by Tj(y;) a triangular
generating set of I, . o o

Let 7 be the triangular set formed by the union of 77, ...,7T,,and T’ obtained by replacing
in 7 each variable y;; by a variable x, such that this substitution is one-to-one (among the
set of variables y;; and the set of variables z,) and such that the pure galoisian ideal I’
generated by 7' has G{ . as stabilizer.

Remark 2 To obtain T' easily, we compute the triangular set T" resulting from the following
substitution in T :
Y11 = T1, Y12 ' =22, -+ 5 Yrd, ‘= Tp ;
the set T" is a triangular generating set of the galoisian ideal with G, ., as stabilizer (for a
good choice of the conjugate of each G; ). Therefore the known identities about galoisian ideals
give us:
7"/ — 0_—1'7‘//

As G < GY_, any group K such that

,T

1111
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is a candidate for our goals, and the galoisian correspondance about ideals implies:

I=1dLa) C J=I1dK.q)
c I'=1dG]. )
C M=1dG.«a
Example 1 When K = Gy, X ... X &y, the triangular basis of the ideal J s the union of
the triangular bases of the galoisian ideals of symmetric relations of the polynomials f1,..., f,
given respectively by the Cauchy moduli of f; (see [8]). If moreover L is the symmetric group

then we are in the particular situation studied by N. Rennert in [4] in order to compute absolute
resolvents ; in this case, T' =T" (i.e. o =id ) and the condition (13) is satisfied for o =id.

To simplify the rest of this presentation, we assume without lost of generality that
G<G.,<L

and that the n-tuple « of roots of f in V(I) is ordered as well: the d;-tuple «; of roots of
fi stands after the roots of f;_; and before the roots of f;,;.
Let Uy,...,U, be r groupssuch that G, < U; < Gy, for i =1,...,r and U;x...xU, < L.
We can set
K=U; x...X UT

The union of the triangular Groebner bases of the ideals Id(U;.q;) forms a triangular basis of
J . Remark that this property has been already applied in order to describe the construction
of a triangular basis of the ideal I’.

Practically, we choose groups U; as small as possible such that the computation of Re k. is
the fastest includind the cost of a triangular basis of Id(U;.q;) .

Application to F,[z]

The coefficients of f belongs to IF,,, where p is a prime integer. In this particular case, the
respective Galois groups G; of f; are the cyclic groups Cy, of degree d;. Denote by 21, the
(maximal) galoisian ideal of ;-relations. The variety of 9; is Cy,.c; . As the Galois group
is cyclic, the triangular basis of 901, can be computed easily from the irreducible factors of f;
in F,[z]/ < fi >. Note that it is not necessary to factorise f; completely (see [3]). The best
choice is U; = Cy, for ¢ =1,...,r. We have just to find ¢ € &,, such that

K = (Cdl X - X Cd,r,)g < L. (15)

5 Computation by multimodular technique

Let f € Z[z] be any polynomial of degree n with n distinct roots in C. We want to compute
R = Reo 1, for a group L containing the Galois group G of «.

Suppose that we computed the resolvent R modulo prime numbers py,...,p, such that the
product p; ---p, is greater than the double of the maximal absolute value of the coefficients of
R . Then the resolvent R is computable by the Chinese Remainder Theorem.
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In this section, we have to compute efficiently R modulo some prime p and to establish a
bound on the coefficients of R. In addition, we give a certification to stop the algorithm before
the bound is reached.

Assume that the integer p does not divide the discriminant of f. Such an integer, called
unramified, exists since f is square-free. Set ¢ = g mod p for any polynomial ¢. Recall the
essential following theorems:

Theorem 2 (Dedekind, [9] ) Let f(x) € Zlx] be a polynomial of degree n with n distinct
roots in C and let G be the Galois group of f over Q in &, (ie for any «). If p is
unramified and f f1 fT with fl irreducible over F, of degree d;, then there exists T € G
with a cycle decomposition oy ...0, with o; of length di.

The tuple (dy,...,d,) of Theorem 2 is called the cycle pattern of o and the decomposition type
of f.

Theorem 3 (Frobenius Density Theorem, [10]) Let (di,...,d,) be a partition of n. Then, the
relative density of the set of primes p for which f modulo p has a given decomposition type
(dy,...,d,) exists and equals 1/|G| times the number of o € G with cycle pattern (dy,...,d,).

Note that Frobenius Density Theorem is extended by Tchebotarev Density Theorem [11].

5.1 Computing R modulo p

In F,[z], the polynomial f factorises into r irreducible factors as follows:
f=fif

where deg(f}) = d;. When r = 1 the prime integer p is “bad” and we throw this integer.
Frobenius Density Theorem 3 shows the density of “good” primes.
Let G; = Cy, be the Galois group over F,[z] of a d;-tuple d; of roots of fis i € [1,7],
and G be the Galois group of & over F,[z] ; & can be chosen such that G < Gy x --- x
As p is unramified, for some o € G,,, by Dedekind Theorem 2, this inclusion follows.

r
G,.

() <(Gix--xG) <G<L

We are exactly in the situation in which the computation by decomposition of the L -relative
resolvent of & can be performed efficiently (see Section 4).

5.2 Bounding the coefficients of the resolvent Rg s

For the general case of relative resolvents, we just have to modify the Rennert’s formulae (|4])
by replacing the symmetric group &,,, stabilizing the ideal of symmetric relations, by the group
L, stabilizing the galoisian ideal . This leads to the following expression for a bound on the
coefficients of f.

B(R) = (Co(Cy + 1))

where C, is the largest coefficient of a polynomial ¢ in Z[z4,...,x,], D, its total degree, and
d=deg(R)=[L:H] .
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5.3 Efficient probabilistic solution with certification

Since the above bound may need approximatively [L : H|Dg prime integers to obtain the
resolvent, a probabilistic approach is interesting to limit these necessary primes. Let us denote
by

R'=R mod g

When ¢ = p; ---pj, where p; ..., p; are prime numbers, the polynomial RY can be lifted by the
Chinese Remainder Algorithm from the polynomials RPi . A classical way to obtain the resolvent
with high probability consists in returning RY as soon as RY = RY where ¢ =pi....DjDjt1-

We actually use another test to stop the computation. In [12], the condition R(@) el is
exploited as a certification for numerical computations of resolvents. Following this idea, even
though ¢ is smaller than 2B(R), we cut the computation when R? = 0 modulo I. As the
ideal I is triangular, this test is reduced to only n euclidean divisions in Q[z1,...,z,].

6 The parallel algorithm

Let p be a prime number not dividing the discriminant of f. We denote by K, the subgroup of
L chosen in order to construct the resolvent R by means of the double transversal K,\L/H .
The cardinality of this double transversal will be denoted by m,, .

A total parallel computation of the multi-resolvent RP would require m, + 1 processors :
a principal processor and m, secondary processors to compute each resolvent in the product
of Theorem 1. For a given p, following Theorem 1, each branch computes a resolvent R, ¢ ;.
In practice, these computations of resolvents take always similar times. It seems impossible
to characterize a different behaviour since the timings depend essentially on the respective
stabilisators of 7;.0, which are pairwise conjugate groups. For instance, the method of [6]
computes the resolvent by successive resultants of the polynomial (x — 7;.0) with respect to
the triangular Groebner basis of J ; there is no reason that this sequence of resultants leads
to significant different timings as we compute a resolvent by 7,.© or by 7,.0. However, we
cannot assure rigorously that the degree of parallelism is m, + 1.

The difficulty of this algorithm is closely related with the two levels of parallelisation of the
method. When the lifting of the resolvent by Chinese remainder is based on s prime integers
p1,.-.,Ds to obtain a certified result, more than m,, + ...+ m,, processors are required for a
total parallelisation. In practice, this generally leads to a partial parallelisation, and it is not
easy to decide and handle the repartition of the processors with respect to the two different
tasks. Since a solution may be lifted with high probability without the computation of every
Rpl, cee Rps , we naturally privilege the total computation of some resolvents RP . We suppose
that S+ 1 processors proc(0),... ,proc(S) are available for the computation. The execution is
controled by the master processor proc(0).

Step 1 /* This step refers to Section 5 */
Processor proc(0)
1.1 Compute a list P of unramified prime integers py,...,ps such that p;---ps > 2B(R).
1.2 Sy :=min{s,S}.
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Step 2 /* This step refers to Section 4 */
For each processor proc(i), i=1 to Sy, do
2.1 Compute fpi
2.2 Factorise f? in F, [z] into irreducible factors
Let r be the number of factors.
2.3 Deduce Gy,...,G, the respective Galois groups of each factor (the cyclic groups)
2.4 Compute K, (see Condition (15))
2.5 Compute a double transversal D of K, \L/H and m; :=m,,
2.6 For j=1,...,r compute the maximal ideals 9%; (actually their triangular basis)
2.7 Compute the triangular basis of the ideal J associated to K, from the ideals 9,
2.8 Send p;, K,,, D, J,m; to the principal processor proc(0)

Step 3
/* This step refers to Section 5 for proc(S) and to Section 3 for the others.
Note I: proc(S) is kept free for the computation of R by Chinese Remainder Theorem
Note 2: We estimate that the modular resolvents will be computed in similar times. */

Processor proc(0)

> Receive the above respective data from proc(1) to proc(.Sy) and stores them in a list ¢
> While (¢ is not empty) do
— Compute the largest integer u € [1, 5] and the number S; of processors such that
Si=(m+1)+...+(m,+1)< S
— Delegate the computation of the resolvents R” (i € [1,u]), to the u processors
proc(N;) (1 <i<wu), where Ny =1 and Ny=my+---+m_1+iif i >1
— Receive a boolean from proc(S) in the variable STOP
— If STOP=true Then Send a Signal to proc(i) (1 <i< S —1); Break ; End If
— Delete the u first elements of the list ¢

— End While
> If STOP=true Then Receive the resolvent R from proc(S) ; Return R ; End If
> Delete py,...,ps, in the list P / * see Step 1 */

> s :=length (P)
> Sy :=min{s, S —1}
> Return to Step 2

Processors proc(j), 1 <j <5
/* When the S; processors needed to obtain the modular resolvents receive the Signal from
proc(0) their computations are simultaneously stopped. */

> If j € {Ny,...,N,} Then
— Distribute the computation on the m; processors proc( N; + 1), ..., proc( Niy; — 1) by
sending to them p;,©, K,,, H,J and 7 € D, the double transversal with #D =m,
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— Wait to gather the results
— Compute the product of these results
— Send the product to proc(S)
> Else
— Receive p;, 0, K,,,, H, J, 7 from some proc( N; )
— Perform the computation of Re ,; mod p, mentioned in Theorem 1
—Send Re., mod p; to proc(N;)
> End If

Processor proc(S)

/* Note I: this is actually repeated until the boolean variable STOP is set to true, meaning that
the algorithm lifted a value for R. As mentioned above, we reserved proc(S) for this task that
may be performed independently. Remark that proc(S) could be replaced by a set of processors
working by parallel to lift R.

Note 2. we introduce variables m and F' that contain respectively the product of the primes
already taken into account and the current value of R™. */

> STOP := false
> Send STOP to proc(0)
> While not STOP do
— Receive py,...,p, and RPr ... RPe from proc(0)
—Let m:=mpy---py
— Compute R™ from F and the RP: by Chinese Remainder Theorem

~ F:=Rm

—If m>2B(R) or F(©) €I Then
STOP := True
End If

— Send STOP to proc(0)

— End While

> Send F' to proc(0).

Conclusion and further developments

A part of this paper has been employed to establish Theorem 1 and to solve the problems
of its application. These problems did not appear in Rennert’s paper for computing absolute
resolvents (see Exemple 1). It is important to note that our method is also more efficient in his
context (L = &,,). Indeed, the group K in the decomposition

m
Rer = H R e

=1
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of the theorem where J = [d(K.a), may be much smaller than the product of symmetric
groups involved in Rennert’s paper. In particular, in our algorithm K is a product of cyclic
groups in the computation of the modular resolvents. Furthermore, in Rennert’s paper the
parallel strategy of his algorithm is not described though his practical exemple is sufficient to
illustrate the interest of the methodology.

The modular computations have a double interest implying the double parallel character of
the method. Indeed, each modular resolvent is computed in parallel and Theorem 1 is applied
to compute in parallel factors of each modular resolvent. This doubly parallel character makes
the implementation rather technical. However it opens a field of investigations and development
of efficient strategies on how to optimize the distribution of the work on the processors between
the different parallelisations involved in Steps 2 and 3 of the algorithm.

The modular computation of a resolvent produces some useful informations :

e One can apply the standard technique to exclude some groups to be the Galois group
because each factorisation of f mod p (p an unramified prime) gives a subgroup of the
Galois group of f (see Theorem 2).

e A partial factorisation of the resolvent RPi on F;[x] is a by-product of the algorithm; these
factorisations of modular resolvents could be memorized in view of a future factorisation
of the resolvent R on Z[z] that is useful for computing minimal polynomials of algebraic
numbers, the Galois group or galoisian ideals.

In some recent works, the double classes of groups have been exploited to study galoisian
ideals and resolvents. The theoritical results of the present paper show their importance. This
tool should probably leads to some future developments and understanding in Galois theory.

References

1. Lagrange J. Réflexions sur la résolution algébrique des équations. Prussian Academy, 1770.
2. Galois E. Oeuvres Mathématiques, éditées par la SMF. Paris: Gauthier-Villars, 1897.

3. Valibouze A. Sur les relations entre les racines d’un polynome//Acta Arithmetica. 2008. V.
131.1. P. 1-27.

4. Rennert N. A parallel multi-modular algorithm for computing Lagrange resolvents//J.
Symb. Comput. 2004. V. 37. N. 5. P. 547-556.

5. Valibouze A. Etude des relations algébriques entre les racines d’un polynome d’une
variable //Bull. Belg. Math. Soc. Simon Stevin. 1999. V. 6. N. 4. P. 507-535.

6. Aubry P., Valibouze A. Using Galois ideals for computing relative resolvents//J. Symbolic
Comput. 2000. V. 30. N. 6. P. 635-651.

7. Aubry P., Valibouze A. Calcul algébrique efficace de résolvantes relatives. Archives HAL-
CNRS, 2009. URL: http://hal.archives-ouvertes.fr/hal-00406357 /en/ .

1340



Bectauk TT'Y, 1.15, BbIm. 4, 2010

10.

11.

12.

Rennert N., Valibouze A. Calcul de résolvantes avec les modules de Cauchy //Experiment.
Math. 1999. V. 8. N. 4. P. 351-366.

Dedekind R. Sur la théorie des nombres entiers algébriques. Paris:Gauthier-Villars, 1877.

Frobenius F.G. Uber bezichungen zwischen den primidealen eines algebraischen korpers
und den substitutionen seiner gruppe//Sitzungsberichte der Koniglich Preussischen
Akademie der Wissenschaften zu Berlin. Phys.-math. 1896. P. 689-703.

Chebotarév N.G. Opredelenie plotnosti sovokuponosti prostykh chisel, prnadlezhashchikh
zadannomu klassu podstanovok (determination of the density of the set of prime numbers
belonging to a given substitution class)//Izv. Ross. Akad. Nauk. 1923. V. 17. P. 205-250.

Abdeljaouad 1., Bouazizi F., Valibouze A. Certification algébrique pour le calcul
de la résolvante de Lagrange. Archives HAL-CNRS, 2010. URL: http://hal.archives-
ouvertes.fr/hal-00483257 /en/.

Accepted for edition 7.06.2010.

ITAPAJIJIEJIBHOE BBIYUVICJIEHVE PE3OJIbBBEHT JIATPAH2KA C
ITOMOIIIBIO MVJIBTNPE3OJIbBEHT

© ®uauno O6pu

Vuupepcurer [Ibepa n Mapu Kropu, [Tapux, 75252, ®@panius, JOKTOp HayK, npodeccop,

e-mail: Philippe. Aubry@upmec.fr

(© Awnauk Banu0Gy3

Yuusepcuret [Ibepa u Mapu Kropu, [lapuxk, 75252, @pannusd, JOKTOp HayK, npodeccop,

e-mail: Annick.Valibouze@Qupmec.fr

Karoueswie caosa: pesobeenta Jlarpanxka; rpymmna [anxya; uaean lanya; koMnbioTepHas
asirebpa; napaJuiesibHble BEIUNCIEHUS.

Hempio nanmoit paboThl ABJISETCS CO3JAHUE MAPAICTBHOO AJTOPUTMa, BHIYUCIIECHUS
PEe30JIbBEHTHI Jlarpanaka Jjist OJIMHOMA OJHOU 1epeMeHHo#. Brrauc/ienne pe3oibBEHTh
Jlarpam:xa NI TOJMHOMAa OTHON TepeMeHHOW BaxKHO s Teopum [amya. Haumbaa c
anaropuTMma Jlarpamzka, ObILIO TOJYIeHO MHOTO APYTWX YACTHBIX PE30JILBEHT, HA3LIBAC-
MBIX abCOMOTHBIME, TI0 OCHOBHOM TEOpEMEe 0 CHMMETPUYIECKUX (PYHKITHSIX. AJTTOPATMOB
Ui He aDCOMIOTHLIX PE30JIbBEHT MaJI0 W OHW MOJYyYeHBl HEJABHO, TAK KAaK OHU WC-
OJIB3YIOT ueasbl ['axya, KoTopble OBLIN BBEJEHBI HEJABHO. DTU AJTOPUTMBI C POCTOM
CTEIMeHN MOJMHOMA TPeOyIoT DOMBINMMX 3aTPaT BpeMenn u namatu. [losTomy Tpedbyercs
pacnapasutesmsanue. B 2004 rogy N. Rennert mpenmoxxua MOTyJIApHBIT aJrOPUTM LIS
BBIYUC/ICHNST aDCOTIOTHBIX PE30JILBEHT [T IEJIOUNCIEHHBIX IO TMHOMOB. MbI TTOKa3bIBa~
€M, UTO ero TEXHUKA MOXKeT ObITh IpUMEHEHA /115 JII0ObIX pe3osbBenT. Takoit ajropurm
€CTEeCTBEHHO pacrapaJuienuBaercd. Kpome Toro, Mbl npesaaraemM popMyry s pas3iio-
JKEHUS PE30JIbBEHT, KOTOpasd JaeT JONOJHUTEIbHOE pachapaJjiennBanne. TeM caMbiM
MBI TIOJTY9YAEM AJTOPUTM C JABYMS YPOBHIMHU PACTIAPAJIICTUBAHUSI.

1341



Bectauk TT'Y, 1. 15, BbIm. 4, 2010

UDC 519.612

SOME ESTIMATIONS OF PERFORMANCE OF PARALLEL ALGORITHMS
FOR SOLVING LARGE LINEAR SYSTEMS OVER GF(2)

© Mikhail Alekseevich Cherepniov
Moscow State University named after M.V. Lomonosov, Leninskiye gory, 1, Moscow, 119899,
Russia, Candidate of Physics and Mathematics, Associate Professor Numbers Theory
Department, e-mail: cherepniov@gmail.com

Key words: fast algorithms, sparce linear systems, parallel algorithms, computer algebra.
This topic explains how to estimate the running time and RAM volume required
by programs of Wiedemann-Coppersmith algorithm, Montgomery’s algorithm, some
modifications of them and new algorithm when uploading multiple compute nodes and
some other details of these algorithms.

1 Introduction

In principle, each operation of any algorithm can be considered for possible use of several similar
sites to reduce time of their implementation. However, if the number of arithmetic operations
is fixed, the most significant reduced time - this is where time falls proportional to the growing
of compute nodes” number. It will be that, for example, if you search relations in the methods
of the discrete logarithm or factorization problem based on the factor databases. However, for
most complex algorithms top rated time of their work T'(N,n,d,c...;s) depend on task and
used equipment parameters: N,n,d,c¢ and the number of used compute nodes s and may
behave differently on different areas of argument changing. Often when you increase s above
a certain threshold so(N,n,d,c...), depending on the task settings, time not only falls, but
begins to grow again. That is because time for exchange between s computing nodes grows
faster than of running time on each compute node separately reduce.

According to the author it is legitimately to raise the issue of calculating
of wvalues so(N,d,n,c...), and Ty(N,d,n,c...) = mingT(N,d,n,c...;s) =
T(N,d,n,c...;s0(N,d,n,c...)) for some model cluster. As a model it is logical today
to take the cluster with an unlimited number of compute nodes for which runtime of one
arithmetic operation with machine words, multiplied by the some constant c, equal to the
runtime of one machine word’s passing between nods.

In modern computer network runtime of passing between the processor and RAM memory
have ¢~ 5, and between the individual parts of RAM ¢~ 20.

As known by author, option c¢ is determined by the ratio between the frequencies of the
processor and "bus which links compute nodes, portion of information bits transferred on the
internal network communications and some other characteristics of the cluster. Let’s also assume
that on a cluster there exists a possibility of direct delivery between performing specific job
computing nodes; and broadcast from fixed site to the sites of some group by binary tree, i.e.
by the logarithm of the number of elements of this group transfers. In this article, all the time
calculates in units equal to time per arithmetic operation with machine words in such model
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cluster. We assume that time for conversion of matrix formats and delay time for preparing
network is negligible.

The task will characterize by four parameters: N > 220 - size of the original matrix
(maximum number of rows and columns), d - upper bound of the number of nonzero elements
(units) in each row of this matrix, n - machine word length, ¢ - parameter which was mentioned
above. However, if the volume of carriage, in bits, is V', while sending time will compute by
formula =V units of time. One unit time is the time that takes one operation with machine
words in our model cluster.

2 Notes about symmetric matrixes

Let N,M € N,F = GF(2) and we want to obtain solution of system of linear homogeneous
equations

DX =0,D e FMN X e FN*" M < N, (1)

where n — width of block, typically equals to machine word length (32 or 64).
At the beginning of Montgomery’s algorithm, and new algorithm [1]| select random block
Y € F¥*" and consider linear system

AX =B, AcFN*VN. B = AY, X € F"*", (2)

where A = DTD € FN*V s singular symmetric matrix. Note that any solution Xp of the
system (1) allows you to build a X4 - solution of the system (2) by the formula

Xa=Xp+Y.

Back, if X4 - is a solution of system (2), than DTD(X, —Y) = 0. If rangD = M, it
follows that D(X4 —Y) =0. That is X4 —Y - solution of the system (1).

Let dim;X is a dimension of the intersection of space (X), formed by columns of block
X and the kernel of a linear operator D. Let dimyX is a dimension of the intersection of
the space, formed by columns of block X and the kernel of a linear operator A = DTD,

and dim4,X - dimension of the intersection of space (X) and the kernel of a linear operator
A= DDT

Theorem 1 For arbitrary X € FN*x»
1. dimi X = dimeX — (M — rangD)
2. dimiD"X > dimbX — (M — rangD)

Proof.

1. In accordance with the size of the matrix D we have dimKerDT = M — rangD . By
definition, the vector X isin KerA if and only if it is in KerD or DX € KerDT\ {0}. The
maximum number of linearly independent vectors that meet the second of these conditions is
not more than dimKerD?T . So corang KerD in KerA not more than M —rangD . Crossing
with (X) we obtain inequality 1.
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2. The number of linearly independent vectors among columns of block DTX decrease
compared to the number of linearly independent vectors among columns of block X no more
than dimKerDT = M — rangD . So corang KerD? in KerA' no more than M — rangD .
Crossing the (X) with KerA’, we get confirmation of 2.

The theorem is proved.

Note that according to the dimensions, matrix A in general have more linear independent
vectors in the core than matrix A’. So we will prefer A.

Theorem 2 Let Krylov space (W) built as a sum of (W;),1=0,1,...,m, with an initial unit
type Wo = B = AY | on the first m—1 of which A -scalar production is nonsingular. Let (W,,)
- A-orthogonal to whole (W), in particular to itself. Let along with AW, i =0,1,....m — 1,
also calculated AW, and X by the formula

m—1
X =) WiWIAW) ' WIB, (3)
i=0
dim(Wy,) = p > 0. Then by not more than (n + p — 1)(n + p)N bitwise operations with
probability at least 1— 5= (subject to statistical independence (Y') and (W) ) one can calculate
the solution of system (2).

Proof.

Note, that by condition the space (W,,) A-orthogonal to the space W = (Wy)+---+(W,,),
in particular A-orthogonal to itself. By the way, note that in practice dimension (W) is small
(say 2). Also by the the condition (W,,) contains all vectors from Krylov space that are A-
orthogonal to all this space. Then AW, have the form wy + wy + -+ + wp, w; C (W;), i =
0,1,2,...,m. When j € {0,1,...,m — 1} we obtain a chain of equations

wiT AW, = (wo + -+ + w) T AW, = (AW,,)T AW, =

(Win)"A(AW;) € (W,)" AW = {0}

that, due to non singularity of A-scalar product at W; shows that w; =0 for j =0,1,...,m—
1, ie. AW, C(W,).

If (AW,,) # (W,,), the element from the kernel of the matrix A can be obtained by
reduction of right part of equality AW,, = Z to triangular form by 2@%] operations (The
complexity of one elimination with columns of matrices AW,,||W,,, Z € FN*("*+1) estimated
with value N).

Now let (AW,,) = (W,,). From formula (3) we get by substitution

(W) (AX — B) = (W))" B~ (W;)"B=0,j=0,1,...m—1,
(W) (AX = B) = (W,,)"A(AX — B) =0,
because AX — B C W . Therefore, in view of the A-invariance of Krylov space

(W;)"A(AX — B) = (AW;)"(AX — B) C
WT(AX — B)={0},7=0,1,..m —1,
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that is vector of the block AX — B are A-orthogonal to W ,ie. (AX —B) C (W,,). It means
that linear operator A displays sum of spaces (X —Y) + (W,,) in (W,,). If (Y) € (W),
dimension of the first space is larger than the dimension of the second, and with the assistance
of the Gaussian exceptions in equality A(X —Y||W,,,) = Z,(Z) C (W,,,), item from the kernel
of A can be found.

The probability that the (Y) € (W) subject to the statistical independence of these spaces
and singularity of matrix A, that leads to (W) # FY, obviously estimated by value 1 — 5,
where n - the number of columns in Y . The number of eliminations with columns of matrices
X —Y||Wy,, Z € FN*H1) estimated with value 2((n+p—1)+...4+1) = 2(7””‘)(2&71) . Theorem
is proven.

Note that condition Wy = B in the last theorem may be replaced by Wy =Y without
subject to statistical independence (Y') and (W) . Then similarly we obtain A(X-Y) C (W,,),
where by construction (X —Y) C (W) \ (W,,,).

3 Parallelization of first and third phases

Before discussing the wording of theorems, refer that consistent implementations of considered
algorithms picks up maximum time for repeatedly recurring operation of multiplying matrix
and block of vectors, this is the main part of the first and third phases of algorithms. Therefore,
parallelization must be primarily applied to this operation.

You can consider the two approaches to parallelization of multiplication matrix and block
of vectors related to distributed storage of the matrix and (or) distributed storage of the block.

The need to use the first of these approaches is also the impossibility of storing in memory
of one compute node all researched matrix D .

To use the second approach consider block of ns vectors. Namely, that all consider
algorithms apply to a system of linear equations DX = 0, where D € FM*N X ¢ FN*"s The
amount s called block factor. Let for simplicity M = N .

Consider the task of parallel distributed multiplication of sparse matrix on block.

To ensure balance load its need to separate sparse matrix into parts, containing
approximately the same number of units. Thus without additional transformation, matrix can
be separated in one direction - by ratios. Divide matrix D € FY*¥ of our system of linear
homogeneous equations on horizontal strips by number [ of used compute nodes. Thus processor
with number ¢ will receive matrix D; , in which the nonzero left only N/l matrix rows of D.

In the first phase of Montgomery’s and the new algorithm it is necessary to calculate
(DTD)B, BY(DTD)'B,B e FN>*"s § =1,2,....

Have

l
D"'D =) D!D;,

1=1
l
D'DB; =Y DID;B;,j=1,...,s, (4)
=1

where B; € FN*" _is j vertical strip of B € FN*"* Storage of this strips and matrix D; on
the compute node need memory
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Nd
Nn—i—nT

bit (we assume that every non-zero matrix element D; have the row number and column
number in one machine word).

Thus distributed computation of block vector DT DB on ls compute nodes will require
%d operations for calculate items D;B; and ¥ (number of nonzero elements in the matrix
D;") operations to complete the calculation DI D;B; € FN*" .

Further, the algorithm consistently evaluated (DTD)*B. This requires sending with
addition by formula (4) and inverse mailing received left part of this equality for all [ using
in its calculation computer nodes of computing site. Using the cyclic sending this takes time
=“2Nn =2Nc.

To sum up, we get a time to calculate (DT D)B at ls compute nodes in the form

2Nd
T + 2Ne. (5)

Calculation of the total Krylov space needed in the new algorithm and in algorithm of
Wiedemann-Coppersmith, to build the solution. In addition to the first phase of the algorithms
vectors that constituents Krylov space uses for constructing coefficients of series as scalar
products X7 DY for algorithm of Wiedemann-Coppersmith, and BT (DT D)'B for the new
algorithm.

For distributed by rows (strips) storage at | compute nodes total block BT even need %
bits. After computing the (D D)'B; on each of the | compute nodes of group with number
4,1 < j < s, it calculates its part of scalar production BT (DT D)'B; by

Nns
l(loggg — loggloggg)

arithmetic operations (for corresponding algorithm one can see pp. 342-343 [4]). When N > 226
this fraction can be evaluated from the top by value

4Nns (6)
[-logaN

All parts after concatenation inside one group gives BT (DT D)!B;, and for all groups -
BT(DTD)'B . Sending time is the minor due to small size of sent matrices. Adding to the
evaluation (5) we obtain estimate of calculation time for the next block of vectors from Krylov
space and the coefficient of the series on the cluster with sl computing nodes:

2dN L 4Nns
l l-logaN

To simplify the calculations we will use the value of [, that makes equal resulting
components:

+ 2Nec. (7)

| = Cgl~ (8)

A more detailed calculation shows that the second element in the estimation (7) when
considered in the present values of parameters, namely, 2ns < dlogo N less than the third. For
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large values of s it’s better to do scalar multiplications on the additional O(ZOQ‘ZN) compute
nodes so that the second element of the evaluation (7) be less than the first and the third. So
let’s use estimation

4Nc 9)

with overall estimation throughout the first phase of the 2% steps approximately

8N2c
10
- (10)
with condition sl < C' or s < C where C - general number of compute nodes of the cluster.

The memory of one node that participate in multiplication matrix on the block and
calculating coefficients of the series, should have RAM space about

s 4 Nnoo+ A= (14 e+ %)GB,

matrix D;; current Bj ; part of BT

(11)

when [ = 2. In the case of N ~ 2% this is approximately

“yaB. (12)

Yaveq
- &
2 d

Note that if scalar multiplications calculates on another additional compute nodes, then
memory on a single node enough demand up

1+c¢
2

GB.

For obtaining general evaluation of the first and the third phase of the new algorithm in
various applications, estimation (10) must be multiplied by a constant, not a great 2.

In the case of Widemann-Coppersmith algorithm rating for memory usage gives expression
(12). Estimate for running time may be obtain similar to (7), where there is no factor 2 neer
d, as there is no DT. So [ will be determined by the formula

[ = —.
2c

For the time of the first phase, contains the calculation of the n— series coefficients and
taking into account the need to build two passages (second to build the solution), we get very
close to the previous estimation:

16N?%¢c
sn

(13)

Note only that in the second pass of algorithm Widemann-Coppersmith, operation similar
to multiplication by B” replaced by right multiplying on a relatively small matrices ¢; that
requires equivalent time.
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4 Parallelization of the second phase

In the algorithm of Widemann in version of Coppersmith vector g builds consistently increasing
its size. Giorgi P., Jannerod C-P., Villard G. in |3| proposed another option with almost linear
estimation of complexity, though with several logarithmic and rather big absolute multiplicative
constants. So optimized algorithm we will call algorithm of Widemann-Coppersmith with
matrix polynomial multiplication.

Let

h=h(\) =) H\ H; € ™", (14)
i=0
Here the size of ns selected so that the algorithm can be apply to the construction of
approximation polynomial at the second stage of the algorithm Widemann-Coppersmith using
block factor s.

Definition 1 Degree of vector polynomial m(\) € (F[\])?™*! called its degree as a polynomial
with vector coefficients from F?s<1

Definition 2 Order of vector polynomial m(\) € (F[A\])?"**! is a nonnegative integer j, that
satisfies h(A)m(A) = 3.y k', pjpa # 0.

Definition 3 o -basis of the series h(\) let’s call matriz polynomial M(X) € F?*2"s[\] that
satisfies the following conditions:

1. The columns M®D(X) of matriz M()\) have an order of not less than o .

2. Any v € F?"*Y\] | whose order is not less than o, have unique representation

2ns

v = Z MOCD c® e RN, degM? + degC® < degv.
i=1

To implement Widemann-Coppersmith algorithm, we must build Pade approximations to
series of the form (14), where H; = XTD'Y; X, Y € FV*" namely P(\),Q(\) € Frsx2ns[)],
that satisfies

1) (3 ) = 0004, deg@,deg < (15

N

where I, in concatenation is identity matrix from F"*" d = -~

Let further for simplicity Nns = 2% .

Theorem 3 Let N > 226 . An upper bound for running time of parallel implementation using
block factor s of the second phase of the Wiedemann-Coppersmith algorithm with matriz
polynomial multiplication

1) When

S 120(logzloge32N ) (loga "y — logalogs™s)

5z 17n

has the form :
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1122Nn?s%(10g232N) (log24N ). (17)
2) When
5 120(logaloga32N ) (loge s — logalogs's’) (1)
17n
has the form :
15840Nns*(10g232N ) (logo4N ) (logaloga32N). (19)

Remark 1 Because inequality z > 2AlogaA leads to z > Alogsz, we obtain that if s >

2120l0912;‘;9232Nl0g2 (1201092;;’9232]\[) , than inequality (16) holds.

Proof of 3.

To build the necessary approximation we use the algorithm from article [3], which builds
o -bases, consistently doubling o. According to this article we can built whole basis, when
replace series h(A\) to A(A?) x (1, A\, A2, ..., A2~ 1)T" and construct approximation to it which
order is 2dns, using 2d coefficients of series h(\). Estimation of running time of program of
corresponding algorithm C'(ns,ns,2dns) can be obtained from the proof of theorem 2.4 [3],
replacing d to 2dns, namely

C(ns,ns,2dns) < 2C(ns,ns,dns)+
MM (ns,dns) + MM (ns,2dns),

where MM (a,b)-complexity of multiplying the two matrix polynomials with degree b from
Fex¢[\]. Continuing similarly, obtain

C(ns,ns,2dns) <
MM (ns, 2dns) + S, MM (ns, 2~ "2dns) (2" +2'1) (20)
< % Zingdns QZMM(TLS, 2_i2dns).

Remember, that for simplicity we demand Nns = 2%,
Optimized algorithm to multiply matrix polynomials may be taken from the article [5].
According to lemma 3.2 of this work obtain following estimation

(ns)? (ns)?ns

MM (ns,2") < ag + BQlogQE n
2

ns’

n — logaloga ™y

where Q : p(r®) > 220+ 1),H : 20 +2 < Q < 2971 + 1, ag < rQ27((6r + 2)u,(H +
1) + 2%),5@ < r92F B, where as r any natural number other than 2 can be selected, p, -
sum of modules of the coefficients in a cyclotomic polynomial with number r, as and S5
respectively is the number of additions and multiplications for multiplication polynomials with
degree ¢(r?)—1. Tt is known that when r = 3 one can choose [, equals to 17. Here we apply
trivial algorithm for addition of matrixes, broken by rows in machine words with the length of
n and optimized algorithm of multiplying such matrixes as set out above. When r = 3 we get
tr = 3. Q can be chosen the lowest such that 3971 > 20+ 1 (see. p. 8 [3]), so 3¢ < 9(2' +1),
and when i > 1 we obtain 39 < 27 and because 3logs;2 < 2, we have:
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2
MM (ns, 2y < U3 gty oita,
n

. 2 17
(20  3(logslogs2™ +1) + =g + ——— n)
9 l0927 — logglogm?
ns 2 2i+5 .
<! n) 5 (i +4)

2(i +4) 2 17ns
60(1 1) +=
( (fog: 3 )+ g2 " loga"y — l0g21092%>

Because inequality

A(i + 4)

2
§oz2 + 60logs < 120logsloge32dns

for © < logs2dns obviously done, subject estimation can be continued by value

ns*2dns11(logs2dns + 4)-
(120[og2109232dn3 o lTns )

loga % —logaloga %

(21)

Thus

C(ns,ns,2dns) <
3ns?22 - 2dns(logs2dns + 4)log.4dns-
<120loggl0g232dns + gy Lns <
2

—logaloga 75*

66 Nns2loga32N1ogy4N -

(120l0g210g232N + 17ns > (22)

loga 75> —logaloga 5*

In the case 1) this inequality can be continued by value

132Nns?(10g232N ) (logo4N) - 17ns
loga™s — logaloga™s: '

Since in this case, % > 16, this evaluation can be continued by value

1122Nns*(10g232N ) (loga4N).

Second case obviously follows from the evaluation (22). Theorem proven.

Theorem 4 Running time estimation of parallel implementations using block factor of
Wiedemann-Coppersmith algorithm with the matriz polynomial multiplication under condition
that N > 225 and

N~ 71(logz32N)(log2AN)
cn

<240loggl09232Nl0g2(167—0nloggl09232N) > *
17
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has the form

9ANHip icd ((log232N) (l0g24N))%.

Proof.
Proof of this theorem follows from remark 1, theorem 3, 1) and evaluation (13) when
1 8Nc 1
s=- :
4 \ 561n3(logs32N)(log4N)

Note that when N > 2% ¢ > 1 estimation of this theorem holds.

5 Conclusion

It’s worth noting that in procedures (see [6]) using which 12 December 2009 was received
new record of integer factorization, actually applies the usual algorithm of Widemann in
Coppersmith version with s = 8, but construction of approximations was not consistent,
but by binary tree as described above. Complexity of the corresponding algorithm proposed by
Thom é in the |7] estimates by value

N
O(n?s*(ns + logak)k - logak - logslogak), k = —

that is,

O(Nns(ns + logaN)logaNlogaloga N ).

This estimate is very close to evaluation (22). In principle, the difference is that degree of
s is one less. Therefore, similar reasoning, when s = O(N3) we can obtain time estimation of
the type

O(N'3 (logsNlogslogsN)3).
It is important to note that the necessary memory volume in this case

O(k(ns)*logak) = O(anlogg%)

bits, where multiplier logok associated with increasing integer factors when the recursive
application of Fourier transform for polynomials with integer coefficients (see, for example [8, 9])
is used. For values of parameters for which was done record calculations N ~ 3-2%6 s =18 it’s
around 1TB. With using optimal value of s this is O(N1+%nloggN) that is really significantly
much. An important advantage of algorithm [1] is the lack of need for multiplication of matrix
polynomials to calculate only few coefficients such works. That leads to the good parallelization
and runtime approximation for the second phase about O(N) with the same asymptotic for
RAM volume (with constant in O equals approximately 3).

However, some optimizations of this algorithm allows quite remove requirement growing
RAM, and get an estimation of time of parallel implementations using block factor when N >
226 n = 64,1 < ¢ of the whole algorithm of the type:
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8,4ci N3 (23)

2
in assessing the number of compute nodes asymptotically O(zivij) (when N =~ 2% ¢~ 12 d~

29 number of required compute nodes is approximately 2400 ).
It is known that in usual parallel implementation of Montgomery’s algorithm [2| the main

complexity gives sending time during multiplying a matrix by a vector (see estimation (5)).
You can assess that value by

N 2eN?
T (Conp) = 20
n n n

As is known for the author, now there exist parallel implementations of Montgomery’s algorithm
with better bounds. Attitude this time work to the optimal time for the new algorithm roughly
equal to 3. Increasing the size of the matrix N the attitude will be equal to

N

3
3%'

In addition, this algorithm have not "high parallelism" , i.e. its parts cannot be done on
independent clusters. The new algorithm and algorithm of Wiedemann-Coppersmith allow you
to compute the coefficients of series and its approximations on the independent sites.

Note ones more feature of Widemann-Coppersmith algorithm and the new algorithm. When
you use block factor s, running time of the first and third phases can be reduced to s, running
time of the second phase increases depending on s not slower than s?. For example, the
complexity of multiplying two matrices from GF(2) with size ns X ns, as we saw above, have
the estimate n?s3. At the same time, if this matrix divide to the blocks with the size nss xnss
and send each pair of such blocks from different matrices for multiplication on an execution site,
while time on sending and arithmetic operations will be about O(n?s®) , and the number of
used compute nodes O(sg) . Similar considerations can be done fore the parallelization of scalar
production of vectors. Solving of homogeneous systems (bring to the triangular form) can be
made using a recursive algorithm that transfers calculations again to a matrix multiplication.
Such parallelization leads to overall estimate of the form

2

o™y 4 o(Ns),

S

that for s = O(v/N) leads to O(N2). The total number of compute nodes 2si (see. (8)) will
be about O(N/logN) .

We gather results in the table:
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Running time Nodes Total RAM
Wiedemann-
Coppersmith
with matrix | 94N in"1c1((log232N)(log2dN))1 | O ((mﬁvp) O(N'+H)
polynomial
multiplication
Wiedemann-
2 1 2 1
Coppersmith- O(N'*3(logaNlogslogaN)3) O(zo];]jzv) O(N'3logyN)
Thomé
Montgomery
New
algorithm 8,45 N3 O( Z(ZSN) O(NH%)
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DFT FOR POLYNOMIALS IN PARALLEL ALGORITHMS
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We investigate sequential and parallel algorithms for polynomial arithmetic based
on discrete Fourier transform (DFT). Algorithms for polynomial multiplication are
discussed. Sequential algorithms for polynomial matrix are proposed. Each algorithm
based on DFT has been compared with similar algorithm based on Chinese remainder
theorem. In the last part of work parallel algorithms for calculation DFT and
multivariable polynomials multiplication are considered. Theoretical expressions of
complexity are presented for each algorithm. Results of experiments on MVS cluster
are presented for parallel algorithms.
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1 Introduction

Effective implementation of arithmetics for multivariable polynomials is a significant problem in
symbolic computations. This problem is important for calculations with polynomial matrices.
During calculations polynomials of high degrees are appearing. Therefore, standard algorithmes
are non-effective. Modular methods are used to reduce cost of polynomial coefficient and degree
growth. Let’s remind Chinese remainder theorem (CRT). It is usually used by next scheme:
elements of polynomial matrices are mapped into finite fields Z,[z|/(z —j)Z,|x], Z, = Z/pZ ,
where p is some prime number. Then calculations are fulfilled over this finite fields. Result is
recovered via Newton’s or Lagrange’s scheme. Complexity of interpolating of one polynomial
is O(t* + tr?), where t and r are the numbers of used polynomial and numerical modules
respectively.

It has been shown in works [10, 11] that algorithms based on discrete Fourier transform are
more effective at interpolating result instead of CRT for polynomial modules. The main idea
of calculations based on DFT is that under mapping in factor ring Z,[z]/(z — j)Z,[x] values
of parameter j are chosen in a special way. It allows to recover result in Z,[z] by DFT and
CRT in time O(tlog,t + tr?) where ¢t — the number of points in DFT, r — the number of the
numerical modules. Coefficients of polynomials are also recovered by CRT.

In paper [1] the algorithm for multiplication of two polynomials based on DFT in a finite field
Z,|x] is described. Theoretical and experimental comparison of DFT-algorithm of polynomials
multiplication with Karatsuba’s algorithm of multiplication [12] and direct algorithm is resulted
in works [7,12]. The problem of multiplication of two polynomials based on DFT on the processor
with several kernels and the general memory is considered in articles |2,3].

Comparison of two classes algorithms for polynomial calculations is done in the given work:
the first class of algorithms uses CRT both for polynomial and for the numerical modules. The
second class of algorithms uses DF'T instead of CRT for polynomial modules.

In section 2 theoretical and experimental comparison of algorithms of polynomial multiplication
of one variable is spent.

In section 3 DFT-algorithm for calculation of a determinant, the characteristic polynomial,
the adjoint matrix for the matrices which elements are polynomials of one variable over a
ring of integers are considered. The problem of multiplication of two polynomial matrices
is considered. For each algorithm theoretical and experimental comparison with the CRT-
algorithm is resulted. Alogrithm based on DFT are suggested by author.

In section 4 the algorithm of calculation of DFT for multivariable polynomials is considered,
complexity estimations are shown. The parallel algorithm of multidimensional DFT calculation
is proposed by author. Results of experiments on cluster MVS are presented.

In section 5 the parallel algorithm of multivariable polynomial multiplication based on
DFT on parallel machines with the distributed memory is considered. Parallezation scheme of
algorithm has been made by the authors.

All experiments are done on MVS cluster with the next configuration: 1460 computing
modules with 8 cores Intel Xeon 3 GHz and 8Gb RAM by module, operation system is Cent
OS. All algorithmes were implemented in Java 1.6. MPIJava binding for MPICH is used for
parallel algorithms.
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2 Algorithms of multiplication of polynomials
of one variable in Z-ring

It has been shown In work [1,7,12] that multiplication of polynomials based on DFT has the
complexity estimation O(mlog, m), where m is the degree of polynomials. Let’s consider the
following algorithm for computing product of two polynomials f, g € Z[z] based on DFT (PF):

1. Choose the number of numerical prime modules 7, po,...,p._1, sufficient for recovering
of fg in Z.

2. Calculate DFT F(f), F(g) for polynomials f and g in each finite field Z,,,
i=0,...,r — 1.

3. Calculate F(f)-F(g) in each finite field Z,,,8=0,...,7 —1, where ”-” - operation of
element-wise multiplication of two vectors.

4. Calculate the inverse DFT for vector F'(f)-F(g) in each finite field Z,,,8=0,...,r—1.
Elements of this vector are polynomial’s coefficients fg over the module p;

5. Reconstruct polynomial coefficients fg in Z by CRT.

At the given algorithm following mappings in various algebras take place:

Z[x] = Zy[2] =" F(Z,[a]) =" Z[z] — Z[a]

Let’s receive theoretical expressions for complexity of last algorithm. Let f and g be a
polynomials in Z[x] with degrees m — 1, each coefficient occupies w machine words. Product
degree fg is 2m — 2. The maximum by absolute value coefficient of product of polynomials
fg contain no more than r = [log, m + 2w| words, where h = 2%  H - number of bits in a
machine word.

Let’s choose as modules prime numbers, each consists of H bits.

Then r is the number of prime modules pg,...,p,—1 which is enough for recovering the
result from Z,,[x] to Z[z] via modular a method according to the Chinese remainder theorem
(CRT). Here it is designated Z,, = Z/p;Z .

As product degree fg is equal 2m — 2, the number of points for DFT is N = 2/leg2(2m=1)T

Let f=FY(f) and E¥(f) - N -dimensional vectors of direct and inverse discrete Fourier
transforms for a polynomial f in the field Z,, on N points. Here f is considered as a vector
of polynomial’s coefficients. It is possible to show that for any f it is carried out

Nf=EY(F(f)

Then product of polynomials f and g in the field Z,, is calculated by the formula

EN(EN(F) - EN(9)/N, (%)
where operation " - " designates multiplication of two vectors of length N in terms V; = W;-U; .

Let’s result separately each step of algorithm and number of operations on the step.
a) We calculate remainders of division polynomials f and g by p;,
i =0,...,7r — 1. It takes to execute 2m divisions of numbers of length (w) on numbers of
length (1). It is required 2mrw divisions and 2mrw subtractions.
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b) We calculate DFT for polynomials f and ¢ in Z,, []

i = 0,...,7 — 1 Calculation of DFT is carried out by algorithm Cooley-Tukey [7] on N =
2Moga(2m=1T points. Then the number of operations of addition, multiplication and division are
the same and equal to 2Nrlog, V.

¢) Element-wise multiplication of DFT-images of polynomials f and ¢ in each field Z,, . Thus
it is required r N operations of multiplication and as much division operations.

d) We calculate the inverse Fourier transform in each field Z,, . For this purpose it is required
to perform rN log, N operations of addition, multiplication and division.

e) We recover the result coefficients by CRT. For this recovery it is required to fulfill 2r%(2m—1)
addition and multiplication operations.

Let’s compare the considered algorithm and the following:
0. Standard algorithm of multiplication for numbers and polynomials (PSS).
1. Karatsuba’s algorithm for multiplication of numbers and standard algorithm for multiplication
of polynomials (PSK).
2. Standard algorithm for multiplication of numbers and Karatsuba’s algorithm for multiplication
of polynomials (PKS).
3. Karatsuba’s algorithm for multiplication both numbers and polynomials (PKK).
Let’s result theoretical estimations of algorithms [12]. We get the number of operations of
addition - A, multiplication - M and divisions - D.
Table 1
Number of additions, multiplications and divisions at multiplication of dense polynomials for
algorithms 0-4

0 A m2w?
PSS | M m?(w? + 2w)
1 A 10m? (w'o823 — w)
PSK | M m2w'°823
2 A w?(10m!°823 — 14m + 4)
PKS | M R
3 A | w(10m™823 — 14m + 4) + (maw)™°e23
PKK | M (mw)823
4 A | 2mrw +3Nrlogy N + 2r%(2m — 1)
PF | M| 3Nrlogy N +rN+2r%2m —1)
D 2mrw 4 3rNlogg N +rN

It is clear from Table 1 that the best algorithm by degree of polynomials is algorithm PF.
The best algorithm by the number of words w in coefficients of polynomials are the algorithms
based on Karatsuba’s scheme for number multiplication.

2.1 Experimental comparison of algorithms

Programs have been written and experiments for measuring time of execution for algorithms
of polynomial multiplication with corresponding parameters m and w are done.

Results are presented in tables below.

It is possible to choose for each set of parameters m and w algorithm which spends the
least time for multiplication of two polynomials by comparison the tables listed above. Besides,
let’s find the relation of the time spent with algorithm PSS, to epy time spent with the most
fast algorithm. Results are presented in Table 3.
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Table 2

Results of experiments with multiplication of polynomials of one variable in a ring of integers

| m | 4 [ 16 | 64 | 256 | 1024 | 4096 | 16384 |

PSS

w=4 [0008[0235] 59 [ 103 | 1550 | 20930 | 292020

w=16 | 0.05 || 1.325 | 26.5 | 425 | 6720 | 101970 | 1.58-10°

w=64] 0.68 || 17.25 | 305 | 5060 | 80740 | 1.3-105 | 21106
PSK

w=4 0009 026 [ 64 [ 109 | 1550 | 21770 | 319440

w=16| 0.05 || 1.3 | 25 | 415 | 6480 | 99700 | 1,6-106

w=64] 0.66 || 19.75 | 330 | 5430 | 78730 | 1213330 | 19.3-10°
PKS

w=410022[ 039 5 [ 55 [ 300 [ 3600 | 28240

w=16 | 0.057 || 0.85 | 10.1 | 102 | 870 | 6940 | 59040

w=64] 056 || 68 | 68 | 590 | 5360 | 47420 | 42679
PKK

w=410023] 04 [ 52 57 [ 510 | 3690 | 29830

w=16 | 0.057 | 0.84 | 10.1 | 104 | 880 | 6990 | 59670

w=64] 055 || 11.2 | 90 | 720 | 5680 | 48040 | 513630
PF

w=4 1033 [[1575] 78 [ 345 | 145 670 2510

w=16| 19 || 96 | 41 | 175 | 730 | 2910 | 12200

w=64] 20. || 8 | 360 | 1450 | 5890 | 24130 | 100140

Table 3

Numbers of algorithms of multiplication of dense polynomials which have shown in
experiments the least time for the data m and w and their gain in time in relation to
standard algorithm

m w =4 w = 16 w = 64
4 0/1 0/1 1/1.03
16 0/1 2/1.53 2/2.53
64 2/1.18 2/2.48 2/4.85
256 4/2.99 2/4.06 2/8.58
1024 4/10.69 4/8.87 2/14.69
4096 4/31.24 | 4/35.04 | 4/53.24
16384 || 4/116.34 | 4/129.94 | 4/204.84

The table 3 can be compared with theoretical estimations of complexity resulted in Table
1. For this purpose we construct Table 4 on expressions of complexity for the same sets of
parameters m and w.
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Table 4
Numbers of the best algorithms by theory for multiplication of dense polynomials and their
prize concerning standard algorithm

m w=4|w=16 | w =064
4 2/1.5 2/1.7 3/1.9
16 2/2.1 2/2.7 3/3.4
64 2/3.3 2/4.7 3/5.9
256 2/5.7 2/8.2 3/10.4
1024 || 2/10.0 | 2/14.5 | 4/20.4
4096 || 2/17.6 | 4/43.9 | 4/78.2
16384 || 4/61.8 | 4/160.4 | 4/300.0

From comparison of these two tables it is clear that theoretical expressions for complexity
of the algorithms well enough correspond with times are received during experiments. Average
relative error makes 35.86 %.

Distinctions in a prize are connected by that theoretical estimations consider only operations
of addition, multiplication and division, laying aside all other operations.

3 DFT in consecutive matrix algorithms

3.1 Matrix multiplication

Let’s consider a problem of multiplication of two matrices over a ring of polynomials of one
variable. Let’s result two algorithms of matrix multiplication over a ring of polynomials of one
variable and receive expressions of their complexity:

0. Modular algorithm of matrix multiplication, using CRT both for polynomials, and for
their coefficients (MCC).

1. Modular algorithm of matrix multiplication, using fast Fourier transform for polynomials
and CRT for their coefficients (MFC).

In algorithm MFC the new way of application of discrete transformation of Fourier is used.
For each element of multiplied matrices it is calculated homomorphic DFT-image, and further
calculations on algorithm are made with these images. The result is recovered at first by inverse
DFT and then by CRT after the end of calculations.

Let matrices A, B € M,x,[Z[z]]. Let maximum on the coeflicients absolute value of
polynomials which are elements of matrices A and B, contain w, and wp words accordingly.
The maximum degrees of elements of matrices A and B it is less my and mp. We get
m = min{ma,mp}. Then the maximum coefficient of product contains r = [ws + wp +
log;, m + log, n] words, h = 2f . Having assumed that in CRT for numbers are used H -bit
prime modules, r is an enough number of modules, sufficient for result recovering.

The maximum degree of polynomials which appear in product A - B is less then mp =
mag+mp—1.

Let’s take polynomial modules of the first degree. In algorithm MCC it is necessary to take
map prime polynomial modules x,x—1,2—2,...,x—map+1. In algorithm MFC it is required
to calculate DFT for each element of matrices A and B on N = = 2Mog2masl points. Tt is
known from work [7] that with use of N points, DFT in a prime field can be calculated for
N log, N operations of addition and as much multiplication and division operations.
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At reflection in the field Z,,[x] remainders of division by prime numbers py,...,p,—1 are
calculated. Thus, it is required to execute n’rmj w4 and n’rmpwp divisions and as much
subtractions for matrices A and B accordingly. For refelection to homomorphic images in
Zylzl; = Zp|x]/(x — j)Zp,|x],8e = 0.map — 1, it is necessary to calculate a polynomial
remainders of division on the prime modules (z — j) in the field Z,,[z]. For this purpose it is
required n?rmapma and n’rmapmp operations of multiplication, addition and division for
matrices A and B accordingly.

For multiplication of matrices we use standard algorithm. Then the number of ring
operations in Z[z] is n® operations of multiplication and n® addition operations.

Complexity of addition of two polynomials is rm,p additions and rm,p divisions at
calculations on algorithm MCC . Complexity of multiplication of two polynomials makes rmp
multiplications and as much divisions.

Complexity of addition of two polynomials is /N additions and as much divisions at
calculations on algorithm MFC . Complexity of multiplication of two polynomials makes rN
multiplications and rN divisions.

It is necessary to recover n? polynomials. It is required m?zr multiplications and twice
as much additions for recovery of one polynomial from Z, [z]; to Z,[z] . As addition and
multiplication are carried out by the prime module p; it is required also 3m?p divisions.
It is required 7?m4p multiplications and twice more additions for restoration of factors of a
polynomial in Z[x] .

Let’s result the number of additions A, multiplications M and divisions D for algorithms
MCC and MFC.

Table 5
The functions are expressing the number of operations of addition, multiplication and division
for algorithms MCC and MFC

0 A n’r(mawa + mpwp + mapma+
+mapmp) + n3rmap+
+n2(2m2 gr + 2r’mag)
MCC | M | n’r(mapma + mapmp) +n3rmap+
+n2(2m?43r +r?map)
D n?r(mawa + mpwp + mapma+
+mapmp) + 2n3rmap + 3n*r’map
1 A | n?r(mawa +mpwp + 2N logy N)+
+n3rN +n?(rNlogy N + 2r’map)
MFC | M 2n°rNlogy N + n3r N+
+n2(rNlogy N + 2r’°map)
n?r(mawa + mpwp + 2N logy N)+
+2n3rN + n?rNlogy N

v

3.2 Experimental comparison of algorithms MCC and MFC

Programs have been written and experiments in which and MFC time of performance of
algorithms MCC was measured in milliseconds for parameters m,n,w are made.
Let’s consider that the matrix has the size n, density a which elements are degree
polynomials m with the factors consisting from w of machine words, has type (n,m,a,w).
Let’s result the relation of time of performance of algorithm MCC to time of performance
of algorithm MFC:
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Table 6

The relation of time of performance of algorithm MCC to algorithm MFC at multiplication of
matrices of type (n,m, 100, w) by results of experimental comparison

| w—8 |
m n=4 | n=8 | n=16 | n=32 | n=064
4 2.01 | 1.77 1.6 1.23 1.04
8 3.49 | 3.05 | 2.22 1.48 1.15
16 | 5.61 | 3.99 | 2.99 1.84 -
32 | 7.71 | 5.85 | 3.43 1.82 -
64 | 11.74 | 6.65 -

128 | 13.91 | 7.95 - - —
w=16
n=4 | n=8 | n=16 | n=32 | n=64
2.51 | 2.31 2.0 1.71 -
3.99 | 349 | 2.86 2.42 -
5.73 | 4.63 | 3.78 3.04 -
8.01 | 6.03 | 4.57 - -

RAREIESE

For some m,n,w values of the functions expressing complexity of algorithms MCC and
MFC (Tab. 5) have been calculated. The theoretical prize of algorithm MFC rather MCC is
presented to Table 7.

Table 7

The relation of the number of arithmetic operations of algorithm MCC to the number of
arithmetic operations of algorithm MFC for type matrixes (n,m,100,w) by results of
theoretical comparison

w=3_§
m n=4|n=8|n=16|n=32 | n=64
4 2.33 2.14 1.87 1.58 1.32
8 2.52 2.33 2.06 1.75 1.46
16 2.94 2.73 2.41 2.03 1.66
32
64

3.84 3.55 3.12 2.58 2.05
5.63 5.2 4.53 3.68 2.8
128 9.09 8.38 7.27 5.83 4.3
w =16
m n=4|n=8|n=16|n=32 | n=64
4 2.81 2.63 2.35 1.99 1.63
8 2.94 2.77 2.5 2.14 1.77
16 3.23 3.05 2.76 2.37 1.95
32 3.88 3.66 3.31 2.82 2.28

By comparison of two last tables it is clear that theoretical and experimental estimations
well correspond to themselves. The average relative distinction is equal to 24.37 %.
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3.3 Algorithms of calculation of a determinant, a characteristic
polynomial and the adjoint matrix

Let’s receive theoretical expressions of complexity for algorithms of calculation of a determinant,
a characteristic polynomial and the adjoint matrix for a matrix over polynomials of one variable.

si5—1

Let A = (a;;(x)) be a matrix over a ring Z[z] the size n x n, a;(z) = Z afjxk. Let
k=0

ma]§<|afj| < o and dega;; < s.
Z7j7

Complexity of calculation of discrete Fourier transform on algorithm for n? polynomials on
N = 2Mog2ns] hoints at use r modules is equal

n?r(7s[log;, o] + 9N log, N).

3.3.1 Determinant calculation

Let’s apply algorithm of a forward stroke to calculation of a determinant of a matrix. Let’s
estimate the number of prime 32-bit modules r, sufficient for determinant reception on its
image at discrete Fourier transform. The matrix determinant det A can be calculated by the
formula:

det A = Z (—D)'ayj,asj, - - - nj, (1)
(j17"'7jn)
where (j1,...,j,) - transposition of numbers from 1 to n, t - signum of this transposition.

The formula (1) contains exactly n! composes. Having estimated the maximum coefficeint
of det A and having taken advantage of the Stirling’s formula for the top estimation of value
n!, we receive that the number of prime modules r be equal

n

n leﬁsnflctnﬂ’

r = [log, 2(V2mn <E>

where h = 232,

Each ring operation over images of polynomials consists from rN arithmetic operations
over words and rN calculations of a remainder of division. We consider that calculation of
a remainder of division occupies as much time, as 7 additions of words. Then the number of
arithmetic operations over images of polynomials of an matrix A using the algorithm of a
forward stroke equally

8n3rN.

For polynomial recovering from it’s image it is necessary to execute r inverse DFTs and
interpolate ns numbers. Thus, the number of operations for polynomial recovering from it’s

image DFT be
9rN log, N + 2r?sn.

The total of operations with use DFT in algorithm of calculation of a determinant is equal
n*r(7s[log, ] + 9N logy N) + 8n°rN + 9rN log, N + 2r%sn. (2)

Let’s result expression of complexity of algorithm of calculation of the determinant, using
CRT both for polynomials, and for their factors:

n?r(7s[log;, o] + ns®) + 8n'sr + 2n*s*r + 2r?sn. (3)
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N = 2Mes2nsl i (2)) (3).
If ns is equally exact degree of number 2 estimations (2) and (3) look likes (4) and (5):

n*r(7s[log, ] + 9Inslogy(ns)) + 8n'rs + 9nslogy(ns) - v + 2r?sn, (4)
n?r(7s[log;, o] + ns?) + 8n'rs + 2n%s* - r + 2r’sn. (5)

3.3.2 Calculation of a characteristic polynomial

The algorithm for calculation of characteristic polynomial of a matrix [6] is known. The given

algorithm also has complexity O(n3) by ring operations. The difference is in a value estimation

r and it is necessary to recover n polynomials. For the given algorithm r; = log), 2n"s" 1a™.

Complexity of this algorithm is
n?ri(7s[log;, ] + 9N logy N) + 8n’r N + n(9r N logy N + 2r3sn). (6)
The classical approach with use CRT both for polynomials, and for numbers has complexity
n*ri(7s[log, a] + ns?) + 8n'rys + n(2n?s’ry + 2risn). (7)
If ns equally exact degree of number 2 estimations (6) and (7) look like (8) and (9):
n*r1(7s[log, a] + 9nslogy(ns)) + 8n'ris + n(Inslogy(ns) - v + 2risn), (8)
n?ri(7s[log, ] + ns?) + 8n'rys + n(2n?s® - vy + 2risn). (9)

3.3.3 Calculation of the adjoint matrix

The algorithm of calculation of the adjoint matrix also has complexity O(n?) by ring operations.
The number of prime modules is

r = log, 2(V2mn <E> eﬁs”_lan).

e

2

It is necessary to recover n“ polynomials from their images. Thus, the general complexity of

algorithm is
n*r(7s[log;, o] + 9N logy N) + 8n*rN + n?(9rN logy N + 2r%sn). (10)
We also result the expression of complexity of a classical method:
n*r(7s[logy, o] + ns®) + 8n'rs + n*(2ns*r + 2r’sn). (11)
If ns is equally exact degree of number 2 estimations (10) and (11) looks like (12) and (13):
n?r(7s[log, o + 9nslogy(ns)) + 8n'rs 4+ n*(Inslogy(ns) - r + 2r’sn), (12)
n*r(7s[log, o 4+ ns?) + 8n'rs 4+ n?(2n?s* - r 4 2risn). (13)
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3.4 Experimental comparison between the algorithms of calculation
of a determinant, a characteristic polynomial and the matrix

On expressions of complexity algorithms with use DFT are close to what use CRT for
polynomials and CRT for coefficients. The difference only that complexity of calculation of
remainders of division of polynomials on prime modules z,z + 1,...,2 + ns makes ns?
and polynomial recovering from its remainders of division by prime modules demands 2n?s?
operations, and computing the image of a polynomial at DFT and recovering a polynomial from
its DF T-image demands 9N log, N operations. As N ~ ns DFT has advantage. By theoretical
estimations the prize is greatest in case that ns is exact degree of number 2.

Let’s present results of computing experiments.

Comparison of algorithms for calculation of a determinant, characteristic polynomial and
the adjoint matrix was spent.

We compared two algorithms for calculation of a determinant: the first one is based on CRT
only and the second one is based on FFT for polynomials.

For calculation of a characteristic polynomial of a matrix over a ring Z[x] two algorithms
were compared: Danilevsky’s algorithm with application CRT for polynomial prime modules
and New algorithm [6] in which operations over polynomials are replaced by operations over
their images of transformation of Fourier. For restoration of factors of a polynomial as a result

in both algorithms CRT was used.
For calculation of the ajoint matrix it was spent comparison of two algorithms: the first one

is based on CRT only and the second one is based on FF'T for polynomials.

Results are presented in Tables 8-10.

Table 8
Results of experiments with calculation of a determinant of a matrix
s =2, bits = 8, n increases n = 8, bits = 8, s increases
n | CRT, ms | FFT, ms s | CRT, ms | FFT, ms
2 38 26 1.46/1 2 76 51 1.48/1
4 30 13 2.3/1 4 132 124 1.06/1
8 70 48 145/1 | | 8 276 249 1.11/1
16 1094 952 1.14/1 16 755 501 1.51/1
32 25009 22203 1.12/1 32 1884 1010 1.87/1
64 | 625352 506382 | 1.35/1 64 5040 2538 1.99/1
Table 9

Results of experiments with calculation of a characteristic polynomial

bits = 32, s = 8, n increases
n | Danilevsky’s | New algorithm
algorithm, ms | with DFT, ms
4 63 23 2.74/1
8 415 143 2.90/1
16 7655 3619 2.12/1
32 162543.0 99562 1.63/1
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bits = 32, n = 8, s increases
n | Danilevsky’s | New algorithm
algorithm, ms | with DFT, ms
16 1705 761 2.24/1
32 5586 1181 4.73/1
64 23204 2671 8.69/1

Results of experiments with calculation of the adjoint matrix

s =2, bits = 8, n increases ‘ n =8, bits = 8, s increases

n | CRT,ms | FFT,ms s | CRT,ms | FFT,ms

2 1 1 1/1 2 132 73 1.81/1
4 7 5 1.4/1 4 325 138 2.35/1
8 118 67 1.76/1 8 968 284 3.41/1
16 2574 1164 2.21/1 16 4034 589 6.85/1
32 65679 27226 2.41/1 32 14834 1171 12.67/1
64 | 1775930 611129 | 2.91/1 64 55809 2354 23.71/1

Table 10

It is clear from Tab. 810 that the greatest advantage with DFT has the approach in
algorithm of calculation of the adjoint matrix.

4 Parallel algorithm of DFT calculation

xg4], p - prime number. Let the greatest degree of a variable z; is equal
We designate that n = ning...ng. The polynomial f

Let f € Z,[x1,x9,. ..,
n; — 1 in the polynomial f, n; = 2V,
can be written down in a form:

ni—1ng—1 ng—1
f= Z Z Z FirigoinThah? ..
i1=0 i5=0  iq=0
Let the prime number p be so that n; divides p—1. Then in Z, there is the root degree
n; from 1 which we designate w;. We enter definition of discrete Fourier transform for the
polynomial f.
Definition: Discrete transformation of Fourier (DFT) for a polynomial f is called

iq
..fL'd.

dthe -dimensional table of numbers F(f) = (fjl,,_jd), where 1 < j1 <ny, 1 <ja<ng, ...1<
Ja < ng, where
ni—1no—1 ng—1
fjlj?---]d - Z Z Z fivig..inw j”l j212 wildld' (14)

11=0 i2=0 iq=0

The right part (14) contains n composes. In the left part there is an element dthe-
dimensional table, the number of all elements is equal n.

Hence, total number of operations for calculation DFT of a polynomial f is O(n?). We
consider a way of fast calculation of DFT. Let’s write down the formula (1) in a kind:

ng—1 ng—1—1 ni—1 ny—1
o Jdtd Jd 1ld 1 ]klk ]111
Fivjzga = § :W § , § :W § Jirig.igw1 -
ig=0 ig—1=0 i =0 1=0
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At the fixed parameters is,...,7; expression
ni—1
— .71@1 o
]17127137 2 :f“” g%
11=0

element with number j; of one-dimensional discrete transformation of Fourier on n; points
which can be counted on algorithm Cooley-Tukey [1] for O(n;log, n1) operations.
Let’s designate

nk+1—1
k+1 _ k ]k+11k+1
'F}l,---yjk+17ik+27---v7;d - z : F}17 Tk tkt1e iqg%d
ig41=0
At consecutive calculation Fy, Fy, ..., F; the element F,; contains DFT a polynomial

f . The parallelization scheme consists of d consecutive steps, each of them is carried out in
parallel. It is possible to present the scheme of calculation of each step in the form of a binary
tree at which the data is distributed from root vertex to leaf, and the result of calculations
gathers again in the root. On each step in parallel to be calculated one-dimensional DFT, thus
all calculations occur in leaf vertexes. At transition to a following step the order of variables
varies, and after a step d the required d-dimensional vector of DF'T is received. We are resulting
the algorithm.

Algorithm.

Let’s spend calculations in a following order: on the step k are in parallel calculated n/n
DFTs at the fixed values of indexes 7y ... J4-k-1Jd—k+1---Jd-

Let F} be the result of calculations of k-th step, and let Fo=f.

Let’s result the scheme of calculations at the step k. In root vertex d-dimensional array
received on the previous step splits on two equal parts by an index ji.

And each part goes to corresponding affiliated top. In affiliated tops division repeats by
the same index on two half. Such process is carried out recursively to those while there are
free processors or while division on the given index, i.e. number of the processors involved in
calculations less n/ny , is possible. At leaf level one-dimensional DFTs are calculated and the
result comes back upside-down. Then, at the transition to a next step of calculations, the order
of indexes of the array varies from [js x1271---Ja—k+1] tO [Ja—ks1J1---Ja—k). We notice that on
the step k to it is required no more, than n/n; processors.

Let there are m computer modules (CM) with numbers of 1...m. Let k=1.

1) The CM with number 1 receives d-dimensional array and the list of free CM. Degrees
Wik are caleulated. The array and the list of free processors are halved. One half of
array and the list of free processors together with a array of degrees is sent to CM with number
(n/2+ 1), and second half remain in the given CM.

2) Each CM which has received the part of a problem, continues such division further.
Process proceeds before achievement of sheet level, or exhaustion of all free processors.

3) Parallel calculation of one-dimensional Fourier transform is carried out.

4) Each CM sends result back on a tree to that processor from which has obtained the data.

5) The CM 1 collects result and changes an indexation order in result array from
Ja—kr21jd—k+1] 1O [Ja—rt1d1---Ja—t] -

6) Number k increases. If Kk = d 4+ 1 the end of all calculations, differently we pass to
item 1.
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Definition: Efficiency of computation on k processors with comparison on n processors
is
Qp k. = k

On this algorithm the program complex on cluster MVS the Russian Academy of Sciences
is developed. Results are presented in Table 11.

Table 11
Time and speedup of parallel algorithm for calculation DFT for polynomial of two and three
variables in finite field Z,

d=2
Time, ms Efficiency, %
n [ 512 | 1024 | 2048 [ 4096 8192 n [ 512 1024 2048 4096 8192
procs procs
[ 817 | 6838 | 47466 | 371882 | 67108864 1
2 608 | 3918 | 31059 | 190410 | 2267073 2 67.19 87.26 76.41 97.65 | 1480.08
4 | 424 | 1755 | 11470 | 79170 [ 715310 4 717 111.62 | 13539 | 120.25 | 15847
8 374 | 1109 | 4220 [ 30643 | 210488 8 56.68 79.13 | 135.9 129.18 | 169.92
16 | 323 | 730 | 2785 | 11514 83500 16 57.89 75.96 75.76 | 133.07 | 126.04
32 | 294 | 649 | 1792 | 6372 36665 32 54.93 56.24 77.71 90.35 | 113.87
64 | 367 | 576 | 1454 | 4732 18416 64 40.05 56.34 61.62 67.33 99.55
128 | 454 | 571 | 1341 | 3749 11462 128 40.42 50.44 54.21 63.11 80.34
256 | 516 1423 | 4571 12469 256 43.99 47.12 41.01 45.96
d:
Time, ms Efficiency, %

n 32 64 128 256 [ n 32 64 [ 128 ] 256

procs procs

1 345 6916 212756 8140475 1 - - - -

2 263 3446 111121 2955568 2 31.18 | 100.7 91.46 | 175.43

4 175 1731 45085 1055536 4 32.38 | 99.85 | 123.97 | 223.74

8 129 838 12420 358084 8 23.92 | 96.98 | 230.43 | 310.48

16 86 490 4726 127972 16 20.08 | 87.43 | 293.45 | 417.41

32 68 290 2466 66859 32 1314 | 73.7 | 275.08 | 389.54

64 58 316 1495 17918 64 7.85 | 33.15 | 2243 | 719.55

128 | 433 184 945 7554 128 | —0.16 | 28.81 | 176.49 | 847.75

5 Parallel algorithm of multiplication of polynomials of
many variable integers in a ring by means of discrete
transformation of Fourier

In work [1]| the consecutive algorithm of multiplication of polynomials of one variable by means
of DFT is described.

It is offered to calculate product of polynomials in r final fields Z,,,..., 7, , with the
subsequent recoverong of result in Z with the Chinese remainder theorem.

If the number of variables in a polynomial more than one such algorithm can be carried out
on several processors by parallelization calculations of direct and inverse DFTs and calculations
over prime modules.

Let f,g - polynomials in a ring Z[zg, x1,...,2Zq 1]

ni—1ngs—1 ng—1

= 11,02 ’id
f_ Z ZE :filig‘..inxle STy

i1=0 i3=0 ia=0
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mi1—1mo—1 ng—1
. i1 .12 ’id
g = E E e E Girig...in Ty Loy -+ - Ty -
i1:O i2:0 deO

Let ay,a, - maximum on the coefficients of polynomials f and g accordingly. We designate
n="ng-... Ng_1, M =mg-... -Mg_1. Then h = min{n,m} - ara, - the top estimation of
maxixmum on the coefficient in product of polynomials f and ¢. Then necessary for restoration
of result the number of 32-bit prime modules r = [loggs: h] .

Let s; = 2% - the minimum natural number, greater than n; + m;. Let there is a
computer with k& = 2% processors with numbers of 0,...,k — 1. We result parallel algorithm
of multiplication of polynomials.

1. Processor with number 0 defines the necessary number of prime modules pg,...,p.—1.
Let » = 2%, We get t = r/k. In case r < k sending of polynomials is executed only to
r the first processors.

2. Processor 0 sends polynomials f, ¢ and prime numbers py,...,p,_1 to the processor
with number i = 0,...,k—1. Following steps are carried out in parallel on each processor.
3. On the processor with number 7 product of polynomials h;;, = fg on modules

Dijts- - > P+1)/t—1 by means of DFT is calculated. If » < k each processor uses k/r — 1
of free processors for parallelization of DFT calculations.

4. Splitting arrays of coefficients for polynomial h;; = fg on k parts h?/t,...,hf/’tl is

carried out.
5. Send parts h;’/t to the processor with number g¢.
6. Receive h?/t on the processor with number q.
7. Recovering h, polynomial coefficients h is carried out.
8. On the processor 0 polynomial assemblage h is carried out.

9. End of calculations.

6 Conclusion

In the given work comparison of two approaches has been spent to the organization of
polynomial arithmetics over a ring of integers.

In section 2 the problem of multiplication of two polynomials with degree m, with
the coefficients length w of machine words was considered. Theoretical and experimental
comparison of following algorithms was spent:

0. Standard algorithm of multiplication of numbers and polynomials (PSS) with complexity
O(m*w?).

1. Karatsuba’s algorithm for multiplication of numbers and standard algorithm
of multiplication of polynomials (PSK) with complexity O(m?w!°823).

2. Standard algorithm of multiplication of numbers and Karatsuba’s algorithm
for multiplication of polynomials (PKS) with complexity O(m!°823w?).
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3. Karatsuba’s algorithm for multiplication both numbers and polynomials (PKK) with
complexity O(m!°823!0823)

4. The algorithm of multiplication using DFT (PF) with complexity O(w(m log, m)+mw?).
The best algorithm at increase in degree of polynomials was an algorithm 4. On the average
the relative difference in theoretical and experimental estimations makes 35.86 %.

In section 3 algorithms of multiplication of polynomial matrices of the size n which elements
are degree polynomials m with the coefficients length w of machine words were considered:

0. Modular algorithm of multiplication of the matrices, using CRT both for polynomials,
and for their factors (MCC) with complexity O(n®*m + n?(wm? + mw?).

1. Modular algorithm of multiplication of the matrices, Fourier using fast transformation for
polynomials and CRT for their factors (MFC) with complexity O(n3m+n?(wm log, m-+muw?).

The best algorithm at increase of degree of polynomials in a matrix is MFC. At the fixed
degree of polynomials and increasing n the best algorithm is MCC by results of theoretical
and experimental comparison. Average relative distinction in theoretical and experimental
comparison makes 24.37 %.

At a theoretical estimation of algorithms of calculation of a determinant, a characteristic
polynomial and the adjoint matrix, for the matrices which elements are polynomials of one
variable with the integer coefficients, following expressions of complexity have been received:

Table 12
Theoretical expression of complexity for algorithms of calculation of a determinant, a
characteristic polynomial and the adjoint matrix for the matrices which elements are
polynomials of one variable with the integer coefficients. n - the size of a matrix, s - the
maximum degree of a polynomial in a matrix, « - maximum on the module of polynomial’s
coefficient in a matrix, r - the number of the prime numerical modules necessary for
calculation of a determinant and the adjoint matrix, r; - the number of the prime numerical
modules necessary for calculation of a characteristic polynomial, h = 232

Algorithm CRT-+CRT CRT+DFT
Determinant n?r(7s[log, o] + ns?)+ n?r(7s[log, o] + 9nslogy(ns))+
+8ntrs + 2n2s% - r 4+ 2r2sn 8ntrs + 9Inslogy(ns) - v+ 2r2sn
Char. polynomial n?r1(7s[logy, a] + ns?)+ n?r1(7s[logy, a] + 9Inslogy(ns))+
8ntrys +n(2n2s? - ry + 2r2sn) | +8ntrys + n(9nslogy(ns) - v + 2r2sn)
Adjoint matrix n?r(7s[logy, a] + ns?) n?r(7s[logy, a] + 9nslogy(ns))
+8nirs + n?(2n?s% - r + 2r2sn) | +8ntrs + n?(Inslogy(ns) - r + 2r?sn)

From Table 12 it is clear that the best results the DFT-arithmetic has been shown
at a calculation of the adjoint matrix. In problems of calculation of a determinant and a
characteristic polynomial the algorithms using DFT, lose the efficiency with growth of the
sizes of a matrix.

The algorithm of parallel calculation DFT in a finite field has shown high scalability on the
number of processors from 2 to 256. Algorithm acceleration varies from -0.16 % up to 1480
%. Tt is possible to explain such acceleration to that at increase in the number of processors
the computing problem on everyone becomes small enough for effective work with the data in
cache-memory of the processor.
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The further direction of researches is the implementation of parallel DFT-algorithms for

multiplication of matrices, calculations of a determinant, a characteristic polynomial and the
adjoint matrix.

10.

11.

12.
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AIl® 1JI4 ITOJIMHOMOB B ITAPAJIJIEJIBHBIX AJITOPUTMAX
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TamboBckuit rocynapcrsennbiii yuusepcurer uM. [.P. Jlepxkasuna, Unrepuanuonanbuas, 33,
Tamb6os, 392000, Poccusi, acupanTt Kadeapbl KOMITBIOTEPHOTO U MaTeMaTHIECKOTO
MojiesiupoBanus, e-mail alapaev@gmail.com

Karouesvie caosa: ToTUHOMBL, IUCKpeTHOE TpeobpazoBanue Pypbe; mapasae bHbII ajl-
TOPUTM; METO TOMOMOPGHBIX 00pa30B; KIacCTep.

PaccvaTpuBatoTces mocsie1oBaTeIbHBIE U TTAPAJIebHBIE AATOPUTMBI 115 TOJTHHOMUAb-
HOM apudMeTHKN, OCHOBAHHBIE HA JUCKpeTHOM mpeobpazosanun Dypee (JITIP). O6-
CY2KJAI0TCs aJrOPUTMbI JIJIsi YMHOXKEHUsI TIOJIMHOMOB. IlpuBesieHs! mocsieioBaTeIbHBIE
AJTOPUTMBI JIJId TOJTMHOMHUATLHBIX MATPuIl. Kaxaerii aaroput™, ocuoBanubiit ua 11D,
CPABHUBAETCsI C AHAJOTUYHBIM AJITOPUTMOM, HCIOJIB3YIONIUM KATAHCKYH TeopeMy 00
ocTarkax. B mocjesmeit 9acTu PabOThl TPUBEACHBI MAPAJIICIBHBIC AJTOPUTMBI JIJIS BbI-
qncaennus 11O n yMHOXKeHNS TOTUHOMOB MHOTHUX lepeMeHHbIX. lIpuBemennl pesyabra-
ThI 9KcrepuMenToB Ha Kiaacrepe MBC100K s MCII PAH.
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FAST MATRIX DECOMPOSITION IN PARALLEL COMPUTER ALGEBRA
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392000, Russia, Doctor of Physics and Mathematics, Professor of Mathematical Analysis
Department, e-mail: malaschonok@ya.ru
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The new algorithms for finding matrix decomposition and matrix inversion in
arbitrary fields are described. For the commutative domains the algorithm for finding
adjoint matrices is proposed. These algorithms have the same complexity as matrix
multiplication and do not require pivoting. For singular matrices they allow to obtain
a nonsingular block of the biggest size. The proposed algorithms are pivot-free, and
do not change the matrix block structure. They are suitable for parallel hardware
implementation.

1 Introduction

One of the popular linear algebra method is LU matrix decomposition. A lot of different
implementations are well known for this decomposition. But the LU decomposition requires
pivoting. With partial pivoting it has the form PA = LU and with full pivoting (Trefethen and
Bau) it has the form PAQ = LU, where L and U are the lower- and the upper- triangular
matrices, P and () are the permutation matrices.

Another well known decomposition is the decomposition of inverse matrix, which is based

on the Schur complement trick. Let A = ( g g

block A, then the inverse matrix A~! can be written in the form

(0 ™) (0 w-saer ) (B 1) 1)

In these algorithmes it is assumed that principal minors are invertible and the leading elements
are nonzero as in the most of the direct algorithms for matrix inversion. Fast matrix multiplication
and fast block matrix inversion were discovered by Strassen [1|. If we used fast matrix
multiplication then we get the recursive algorithm for matrix inversion which has the same
complexity as the algorithm of matrix multiplication.

In a general case it is necessary to find suitable nonzero elements and to perform permutations
of matrix columns or rows. Bunch and Hopkroft suggested such algorithm with full pivoting
for matrix inversion [2].

There are known other recursive methods for adjoint and inverse matrix computation, which
have the complexity of matrix multiplications ([3]-[5]).

) be an invertible matrix with invertible
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The permutation operation is not a very difficult operation in the case of sequential
computations by one processor, but it is a difficult operation in the case of parallel computations,
when different blocks of a matrix are disposed in different processors. A matrix decomposition
without permutations is needed for parallel computation for construction of efficient and fast
computational schemes.

The problem of obtaining pivot-free algorithm was studied in [6], [7] by S.Watt. He
presented the algorithm that is based on the following identity for a nonsingular matrix:
A7l = (ATA)7TAT . Here AT is the transposed matrix to A and all principal minors of
the matrix ATA are nonzero. This method is useful for making an efficient parallel program
with the help of Strassen’s fast decomposition of inverse matrix for dense nonsingular matrix
over the field of zero characteristic when field elements are represented by the float numbers.
Other parallel matrix algorithms are developed in [8] - [11].

Another form of matrix A decomposition is Bruhat decomposition A = VwU, where
V and U are nonsingular upper triangular matrices and w is a matrix of permutation.
French mathematician Francois Georges René Bruhat was the first who worked with matrix
decomposition in this form. Bruhat decomposition plays an important role in algebraic group.
The generalized Bruhat decomposition was introduced and developed by D.Grigoriev [1], [12].
He uses the Bruhat decomposition in the form A = VwU , where V and U are upper triangular
matrices but they may be singular when the matrix A is singular. Sparsity pattern of triangular
factors of the Bruhat decomposition of a nonsingular matrix over a field was analyzed in [13]
and [14].

This paper is devoted to the construction of matrix decomposition methods in a common
case of singular matrices in a field of arbitrary characteristic and in the domain.

For the matrix over the field two decompositions will be constructed which have the
forms LAU = FE and FA = H. For the matrix over the domain one decompositions will
be constructed of the form: GA = dH. Where L and U are lower and upper nonsingular
triangular matrices, F' and G is a nonsingular matrix, d is a determinant of some nonsingular
block of matrix A which size is equal rank(A) and equalities rank(E) = rank(H) = rank(A)
hold.

In the case of full rank matrix A the matrix £ and H are permutation matrices, UET L
and HTF are inverse matrices for matrix A, and H'G is the adjoint matrix for the matrix
A.

These algorithms have the same complexity as matrix multiplication and do not require
pivoting. For singular matrices they allow to obtain a nonsingular block of the biggest size and
the echelon form and the kernel of matrix.

The preliminary variants of these algorithms were developed in [15], [16] and [17].

The rest of the paper is organized as follows. Section 2 provides some necessary background
and notations. Section 3 presents the algorithm of LEU decomposition. Section 4 presents the
fast matrix decomposition in the field and computation of the inverse matrix. Section 5 presents
the fast matrix decomposition in the commutative domain and computation of ajoit matrix. In
the Appendix 6 we dispose the proof of the theorem 1.

2 Preliminaries
We introduce some notations that will be used in the following sections.
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Let F' be a field, F™*" be an n X n matrix ring over F', S, be a permutation group of
n elements. Let P, be a multiplicative semigroup in F™*" consisting of matrices A having
exactly rank(A) nonzero entries, all of them equal to 1. We call P, the permutation semigroup
because it contains the permutation group of n elements S,, and all their truncated matrix.

The semigroup D,, C P, is formed by the diagonal matrices. So |D,| =2" and the identity
matrix I is the identity element in D,,, S, and P,.

Let W;,; € P, be a matrix, which has only one nonzero element in the position (z,7).
For an arbitrary matrix F of P, , which has the rank n —s (s = 0,..n) we shall denote by
iz = {i1,..,is} the ordered set of zero row numbers and jz = {j1,..,Js} the ordered set of zero
column numbers.

Definition 1 Let E € P, be the matriz of the rank n — s, let iz = {i1,..,is} and jp =
{j1, -, Js} are the ordered set of zero row numbers and zero columns number of the matriz E .
Let us denote by E the matrix

E= Z Wi

k=1,..s
and call it the complimentary matriz for E . For the case s =0 we put E =0.

It is easy to see that VEe€ P,: E+FE ¢ Sn,_and VI € D, : I+1=1. Therefore the map
I — [ =1—1 is the involution and we have Il = 0. We can define the a partial order on D,, :
I <Js J—-1€D,.For each matrix F € P, we shall denote by

Iz =FEE" and Jz; = E'E

the diagonal matrix: Ig, Jg € D, . The unit elements of the matrix Iz show nonzero rows of
the matrix £ and the unit elements of the matrix Jg show nonzero columns of the matrix F.
Therefore we have several zero identities:

E'lp=1pE=FEJp=JgE" =0. (1)
For any pair I,J € D,, let us denote the subset of matrices F™*"
PPt ={B:BeF"" IBJ = B}.

We call them ([, J)-zero matrix. It is evident that F™" = Fyt™, 0 € Uy ;F77" andif I, < Iy
and J, < J; then FI’;X}; C FﬁXJ’;‘

Definition 2 We shall call the factorization of the matriz A € F}'}"
A=L"'EU, (2)

LEU -decomposition if E € P,, L is a nonsingular lower triangular matriz, U is an upper
unitriangular matrices and

L—Ige [, U—JgeF}. (3)
If (2) is the LEU -decomposition we shall write

(L, B,U) = LU(A),
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Sentence 1 Let (L, E,U) = LU(A) be the LEU -decomposition of matriz A € F';" then
L=Ig+1LIg, U=Jpg+JgUJ, E € F;", (4)
L '=Tp+ L g Ult=Jg+JgU L.

Proof 1 The first and second equalities follows from (8). To prove the property of matriz E
we use the commutativity of diagonal semigroup D, :

E=LAU = (Ig+ ILIg)IAJ(Jg + JgUJ) = I(Ig + LIgI)A(Jg + JJgU)J.
To prove the property of matriz L= let us consider the identity
I=L'L=L"'Ig+Llg)=L"1p+1Ig.

Therefore L' Ip =1 and L™ = L™ (Ig+ Ig) = Ip + L™'Ig . The proof of the matriz U~
property may be obtained similarly.

Sentence 1 states the property of matrix £, which may be written in the form Ip <1, Jg < J.
We shall call it the property of immersion.

Examples.

For any matrix I € D,, E € P,, 0 # a € F the product (al + I)I T is a LEU
decompositions of matrix al and the product (alg + Ip)E I is a LEU decompositions of
the matrix aF'.

3 Algorithm of LEU decomposition

Theorem 1 For any matriz A € F™™ of size n =2 k>0 a LEU -decomposition exists.
For computing such decomposition it is enough to compute 4 LEU -decompositions and 17
multiplications for the matrices of size n = 281,

The proof of this theorem is in the Appendix.

Theorem 2 For any matriz A of size s,(s > 1), an algorithm of LEU -decomposition which
has the same complexity as matriz multiplication exists.

Proof 2 We have proved an existence of LEU -decomposition for matrices of size 28,k > 0.
Let A€ Ffﬁs be a matriz of size 281 < s < 28 A’ be a matriz of size 2%, which has in the
left upper corner the submatriz equal A and all other elements equal zero. We can construct
LEU -decomposition of matriz A': (L',E',U") = LU(A'). According to the Sentence 1 the
product L'A'U" = E' has the form

o)) (o r)-(50)

Therefore LAU = E is a LEU decomposition of matriz A.
The total amount of matriz multiplications in (7)-(15) is equal to 17 and total amount of
recursive calls 1s equal to 4. We do not consider multiplications of the permutation matrices.
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We can compute the decomposition of the second order matriz by means of 5 multiplicative
operations. Therefore we get the following recurrent equality for complexity

t(n) = 4t(n/2) + 17M (n/2),t(2) = 5.

Let v and B be constants, 3 > B > 2, and let M(n) = yn® + o(n?) be the number of
multiplication operations in one n X n matriz multiplication.

After summation from n = 2F to 2' we obtain

B _ 9B-2p2 5
17(40280=1) || 4 4k=2081) 4 yk-25 177% o

Therefore the complexity of the decomposition is

17ynf
26 — 4

If A is an invertible matrix, then A~! = UETL and a recursive block algorithm of matrix
inversion is written in the expressions (7)-(15). This algorithm has the complexity of matrix
multiplications.

4 Algorithm with one-sided decomposition

Let us introduce the set of h-matrices in the ring F™*™. We say that a matrix H is of h-type
if for some matrix E € P, the two equations H = [gH and E = HJg take place. We call
E the main part of the h-type matrix H . In other words, the sets of zero rows of matrices H
and FE coincide and each nonzero column of matrix £ stands at the same place in the matrix
H . In particular, if H is nonsingular, then H € S,,. The nonzero columns of matrix E are
called the main columns of matrix H .

Let A € F™ be a matrix of rank (A) = r < n. We wish to obtain a nonsingular matrix
R with the following properties:

(1) RA=H and H is a matrix of h-type with main part F € P, .

(2)If A=TA, I € D,,rankI =r,then R=1+1RI.

If A is invertible, then HTH =1 and A~! = HTR. As this algorithm is a generalization
of the inversion algorithm, we call it the H -inversion algorithm.

One recursive step RA = H may be written as three matrix multiplications

RlA - Al, RQAl - A2, R3A2 - Ag, R = R3R2R1, A3 - H

It is easy to produce the required matrices R when the size of matrix A equals 2. Let the
size of the matrix A equals 2n and matrices A and A’ have the following block form:

Ay Ap : Al AL ) :
A= Al = . . =1,2.3).
( A21 AQQ ) ) ( Az21 Az22 ’ (Z ) <y )
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4.1 The first substep

Let Ry1A;1 = Hy; and Hyp be the h-type matrix with the main part E;;. We denote Ji; =
EﬂEH, ]11 = EllEﬂ and pllt

o I 0 Rll O _ 1
R1_<_A21E1T1 1)( 0 I)Aand RiA= A

Then we obtain the following blocks of the matrix A':
Al = Hyy, Afy = Ry, Ay = An(I— E{{Hyy), A}y = Ap — Ay Ef A,

Let us note that A}, = A}, J1;, because in the place of each nonzero column of matrix Ej; in
the matrix I — EL Hy; the zero column stands.

4.2 The second substep

Let the matrices Ryo and Ry satisfy the equations
RuAb = Hi,, 32114%1 = Hyy,

where Hi5 and Hs are the h-type matrices with the main parts Fio and Fs; respectively. Let
us denote Bl, = Ry AL, . Consider the diagonal matrices Jijp = ELEy, Jy = EL Esy, I15 =
EEl,, Iy = Ey EL and put

R (L —ALEL I 0 I-1,ALET, 0 Ry 0 )
>\ 0 I ~BLEL 1 0 I 0 Ry )

_ [ @=TuALEG + AL ES By El) Ry — Ay B Ry )
—BLEL R, Roq

Using the identities Hiy = I Hyy, InEi, =0, ELL =0, and the fact, that Rip = I;; +
Iy Ryplyy and Hyy = I Hyy

RipHyy = Hui, EfyRisH1y =0, EfyR12 A1, = EfyHy,
we get the block

A%2 = R12A%2 + (_[llAb + AhE;B%Q)EszHH - A%lEleBé =
H12 + [1114%2 — [11Ai2E{2H12 + AilE;B%Q(E£H12 — I) -
His 4 (In A}, — AL B3 Byy) (I — Ef,Hyy),

and other blocks of matrix A?:

Aty = Hu(1— B3 Hy),

Aty = Hiz + (InAly — AL B3 By) (I — EfLHiz)

Agl = H217

A§2 = B212(I - E?ZRHA%Q) = B%Q(I - E1T2H12) . . .

Let us note that these blocks have the properties A, = A3, Ja1, A3 = A3,J1, A}, —Fi2 =
(A2, — E9)J 12, A3y = A%, J12. We use them in the following section.
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4.3 The third substep

Let the matrices Roo satisfy the equation
32214%2 = Hoyo,

where Hyy is the h-type matrix with the main part FEo .
Let us consider the diagonal matrices Joy = EL Fyy, I = EypEl, and put

R (L — A% EL I 0 I 0\ _/(1 — A%, EL Ry,
3 0 I 0 I—1,A3EL 0 Ry 0 (I—1InA%EL)Ry |-

Then we obtain the matrix A; = R3A, with the blocks:
A?l = A%la A%l = A%l? A?Z = A%Q(I - E§2H22)7 A§2 = Ha + [211432(1 - EQTzH22)

that have the properties A:f2 = A‘%ngg s Ag2 — E22 = (ASQ — Egg)jgg .

4.4 The result

We obtain the matrix

R— RyRyRy — ( L+ FG —FRm)

—MG MRy

Here we use the notation
L=(1-11ALEL)RsR,
M = (1— I»A2,EL) Ry,
F= (A%1E2Tl + A%2E52R22) )
G = Ry (AL EL Ry + Ay EL) Ry, .
Aly = Ri1A,
Ay = An(I— Ef Hyy),
Aby = Ay — Ay Ef A,
A3y = Ry Ay (I — EfyHia),
A%, = Hig + 111 AL,(1— ELH\y) — H\ EL A3, .
And we obtain the equation RA = H with h-type matrix H which has the main part

Ell E12
E= .
( FE91 Ea )
4.5 The important particular cases

We can outline two important particular cases.

In the first case the matrix A has an invertible block A;;. In this case we obtain H;; =
Hy = Ry = Ryy =1, Hig = Hy = Ei3 = Eyy =0, A}y = Ay — Ay Ajy, A}, = RyAl,,
A}, = Aly = RijA, L=Ry, M =Ry, F=A}LRy, G= ARy,

R — ( Rll + R11A12R22A21R11 _R11A12R22 )
— Ry Aoy Ry Rao '

More over, if matrix A is invertible, then R = A~!.
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In the second case the matrix A has zero block A;; = 0 and two invertible blocks As;
and Aj,. In this case we obtain Hi; = Hoy = 0, Ry = Roy = Hip = Hyy =1, AL, = Ay,
A%l = Ao, A%2 = A, A§2 =0, A%z =Hyp, L=RpRy, M=1, F=0, G = RyApRy,

R < Rys 0
_R21A22R12 R21 )

5 Matrix decomposition in the commutative domain R

The mapping Ay : BR™" x (R\0) — (R™")? x (R\0)

(A7S7E7d) = Aext<M7 d0)7

with n = 2% we call the extended adjoint mapping of the couple ( M, dy ) if it recursive defined

as follows.
For M =0: Aext(Ma do) = (dQI, O, 0, do)
For k=0 and M =a#0: Acn(a,dy) = (do,a,a,a).

For k>0 and M # 0 we have to divide matrix M into four equal blocks M = (

i,j € {1,2}. Let
(A117 Sll? E117 dll) = Aezt(Mlla d0)7

we denote
M112 = A Mo /dy, M211 = M Y11/do, M212 = (Mg — M21E1T1M112)/d0~

Let

(A127 Sl?a E127 dl?) = Ae:ct(lllMllQa dll)a

(A217 5217 E217 d21> - Aewt<M2117 dll)-
Denote
M222 = A21M212Y12/(d11)2> ds = dydia/dys.

Let

(Ag2, S92, Egg, daa) = Aext(121M222a ds).
Denote

M121 = Sll}él/dlh M122 = 512d21 + <111M112d11d21 - 511E§1A21M212)}/12/<d11>2-

M7y = M Y1a/(dsdry), Myy = Sgy + Iy M3, Y15/ ds,
L= (Idy — I;1 M, EL) A Ayiday / (dyr)?,
Q = (Idyady — Iy M2,ELd11)Ass /d,,
F = S ELdy + M3 EL Ay /d,
G = Ag (Mg, EL, Avody + Moy Bl dyodyy) A/ (d3do),

A= ( (L+ FG/(di1da1)/di2 —F Ay /(di1da) )
B —QG/(d11dandr2) QAz /(di1dan)

) ?
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g_ ( Miydy/day M, ) I ( En Ei ) ‘
S21d22/d21 M;Q ’ E21 E22

Then
(Aa Sa Ev d22) - Aext(Ma dO)

We use here the notations

150

Jij = Ez‘?ﬂp Yij = digl = Egsij’ 67 €412}

Theorem 3 For arbitrary matriz M € R™™ the extended adjoint mapping (A, S, E,d) =
Aert(M, 1) definds the extended adjoint nonsingular matriz A, the echelon matriz S and the

matriz E , which have the property: AM =S and dE = SJg.

The proof is based on the algorithm with one-sided decomposition of the previous section.
All division operations are based on the determinant identities [4] and give as a result the
quotients which are the elements of the domain R or matrices over the domain R.

Let S be the echelon matrix obtained from the matrix M, S; = ETS, then ETAM = ETS
and S1Jg = dJg . Let us write the matrix 57 in the form S; = Sy + dJ. It is easy to see that
S2 = 0. Therefore (Sy+ dJ)(So —dJ) =0, rank(Sy — dJ) = rank(J), rank(S;) = rank(J),
so rank(Sy) + rank(Sy — dJ) = n. That is why the columns of the matrix Sy + d.J generate
the kernel of S;, therefore they generate the kernel of M .

So we obtain the kernel of M :

kern(M) = span(ETAM — dI).

6 Conclusion

The algorithms for finding matrix decomposition and matrix inversion are described. These
algorithms have the same complexity as matrix multiplication and do not require pivoting. For
singular matrices they allow to obtain a nonsingular block of the biggest size. These algorithms
may be used in any field, including real and complex numbers, finite fields and their extensions.
The proposed algorithms are pivot-free, and do not change the matrix block structure. They
are suitable for parallel hardware implementation.

7 Appendix

In this appendix we put the proof of the theorem 1.
Proof of Theorem 1

For the matrix of size 1 x 1, when k£ = 0, we can write the following LEU decompositions
LU(0) = (1,0,1) and LU(a) = (a~*,1,1), if a#0.

Let us assume that for any matrix of size n we can write a LEU decomposition and let us
given matrix A € F ]23“" has the size 2n. We shall construct a LEU decomposition of matrix

A.
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First of all we shall divide the matrices A, I, J and a desired matrix E into four equal
blocks:

A= { ﬁ; ﬁ;z } I = diag(Iy,15), J = diag(J1, Jo), E = { gi g;z } : (5)
and denote
Ij; = EyE], Jj; = ELE; Vi,je{1,2}. (6)
Let
(L11, By, Unn) = LU(An), (7)
denote the matrices
Q = L11A2, B = Ay Uiy, (8)
Ay = BJu, Al =11Q, A}, = Ay — BET|Q. (9)
Let
(Lia, E1o,Urs) = LU(AL,) and (Lay, Egr, Usy) = LU(AS,), (10)
denote the matrices
G = Ly AyUra, A3y = 151G J1o. (11)
Let us put
(Laz, Eno, Unz) = LU(A3,), (12)
and denote
W = (GE[,Li» + Ly BEY), V = (Un E3,GJ 12 + E{;QUia), (13)
(b )= (0" )
We have to prove that
(L,E,U) = LU(A). (15)

As far as Lqq, L1o, Loy, Loy are low triangular nonsingular matrices and Uiy, Uys, Usp, Ussg
are upper unitriangular matrices we can see in (10) that the matrix L is a low triangular
nonsingular matrix and the matrix U is upper unitriangular.

Let us show that E € P, . As far as Ey1, Eig, Fy1, Fy € P, and Ay = LA, AL =
BJiu, AL, = 111Q, A% = I,,GJ15 and due to the Sentence 1 we obtain Fy = I, EyJy,
Ey = Eo1Jy1, B =111F1n, Fa = Ia1FExnJis.

Therefore the unit elements in each of the four blocks of the matrix E are disposed in
different rows and columns of the matrix £. So E € P,,, and next identities hold

EnE = EnJy = JuEd = JiiJy =0, (16)
EfyEn = Byl = LBy = Lol =0, (17)
EnEyy = EigJog = J1nEgy = JiaJos = 0, (18)
E3Ey = Egply = IngEyy = InpIyy = 0. (19)
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We have to prove, that £ = LAU . This equation in block form consists of four block
equalities:

Ey = L12L11A11U11U21;
Eyy = L12L11(A12U12 - A11U11V)U22;

20
Eoy = Lag(LoyAgy — W Li1 A1) U1 Uss; (20)
Eoy = Loy((La1Ase — WL11A12)Ura — (Lot Ayy — W L1 A11) Ui V) Uss.
Therefore we have to prove these block equalities.
Let us note, that from the identity A;; = I;A;;J; and Sentence 1 we get
Ly = I+ LiLiuhy, U = Ju + JuUnJi. (21)

_ The Sentence 1 together with equations Aly = T1Li A, AL = AnUpnJy, A3, =
To1 Lot (Agy — AgyUn EL L1 A15)UpJ 1 give the next properties of L- and U- blocks:

Ly = 212 + I11L1Linkia, Uss :_712 + J12Ur2 J2,
Ly = {21 +£2L21[217 Ua = J2_1 + J21U12J1J1_17 (22)
LQQ = [22 + [21[2[/22[22, U22 - J22 + J22U22‘]2J12'

The following identities can be easy checked now

L12E11 = E117 LlZIll = [117 (23)
E11U21 = Ella J11U21 = J117 (24)
E12U22 = E127 J12U22 = Jl?a (25)
L22E21 = E217 L22121 = 121- (26)

We shall use the following equalities,
LiyAnUn = By, LA Ury = Erg, Ly Ay Usy = Eoy, Ly A3y Usy = En, (27)
which follows from (7),(10) and (12), the equality
EnV = 11QUss, (28)
which follows from the definition of the block V' in (13), (24), (16) and (6), the equality
WEy = Loy BJiy, (29)

which follows from the definition of the block W in (13), (23), (17) and (6).

1. The first equality of (20) follows from (27), (23) and (24).

2. The right part of the second equality of (20) takes the form Lqo(I — I17)QUi2Uss due to
(8), (27) and (28). To prove the second equality we use the definition of the blocks B and
A}, in (8) and (9), then the second equality in (27) and identity (25): Li2(I — I11)QUiaUsg =
L1aA1oUroUsy = EroUs = En.

3. The right part of the third equality of (20) takes the form LogLoi B(I — J11)Us; due to
definition of the block B (8), the first equality in (27) and (29). To prove the third equality
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we use the definition of the blocks A3, in (9), then the third equality in (27) and identity (26):
LogLn BJ11Usy = Lap Lt A5 Usy = Lo Eyy = B, .
4. The identity
ElyLiy = ElyLia(hi + 1) = EfyLiaIn (30)

follows from (23) and (17).

We have to check that (LyyAgy — W L1 A1p)Uys = (Lo Agy — (GEL Ly + Loy BET)Q)Uy =
Lo (Agy — BEEQ)QH —GELL15QU1s = Lyt AYUrs — GEL, L15111QUiy = G— GEL L1 AL Uss =
G — GELE\5 = GJy, using the definitions of the blocks W in (13), A, and Al, in (9), the
identity (28), the second equality in (27) and the definition (6).

We have to check that —(Loj Aoy —W L1 A1) UV = —(Lo1AsUp —WER)V = (=L B+
Ly BJn)V = —LyBJuV = —LyBJy(UnE§\GJis + E[QUra) = —Lyy Ay Un E5\GJ1y =
— 151G J 1o, using the first equality in (27), the identity (29), the definitions of the blocks V' in
(13), (1), then the third equality in (27) and definition (6).

To prove the forth equality we have to substitute obtained expressions to the right part of
the fourth equality:

L22(G712 - ]21G712)U22 = L22721G712U22 = L22A§2U22 = E22'

For the completion of the proving of this theorem we have to demonstrate the special form
of the matrices U and L: L —1Ig € Fry, and U —Jg € Fy, ;.

The matrix L is invertible and Iz < I therefore we have to prove that L = Iy + I LIy,
where IE = diag(fu + ]12, ]21 + ]22) s TE = diag(711712,721.722) s I = diag([l, ]2) .

This matrix equality for matrix L (14) is equivalent to the four block equalities:

LioLyy = I1LyoLyy (111 + T12) +711712, 0= L0(lz1 + I22),
—LogW L1y = —IsLogW L1y (111 + L1a), LoaLoy = IsLoo Loy (1o + Ia2) + Iy 1o

To prove the first block equalities we have to multiply its left part by the unit matrix in the
form I = (I, +1;) from the left side and by the unit matrix in the form I = (Iy;+I15)+ 111119
from the left side. Then we use the following identities to obtain in the left part the same
expression as in the I‘lght part: LHYH = 711 s L12712 = 712 s 71L12L11 = 71 y 71(]11 + 112) =0.
The same idea may be used for proving the last block equality, but we must use other forms of
unit matrix: I= (I + 1), T = (Iy + Iyg) + Io11ss.

The second block equality is evident.

Let us prove the third block equality. We have to multiply the left part of the third block
equality by the unit matrix in the form I = (I + I5) from the left side and by the unit matrix
in the form I = (I1; + I15) + 111115 from the right side.

The block W is equal to the following expression by the definition (13), (11) and (8):

W = (La1(Aze — Ay Un EY,Q)U1s EY, Lys + Loy Ao Un EY).
We have_to use in the l_eft part the eqllations 72L2_2 =1y, IoLoy =1y, I5A9 =0, [545, =0,
and Ly Iy = I, Loy, = Io, ElI :_07 ELI =0.
The property of the matrix U: U — Jg € Fj, ; may be proved in the same way as the
property of the matrix L.
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[Ipeiyi02K€HBI HOBBIE AJITOPUTMBI JIJIsi BBIYUCIEHUA MATPUIHOTO PA3JIOKEHUS U JIJIsl BbI-
qHCJIeHUsT OOPATHON MATPHUIIBl B CJIy9ae MATPUIl HAJ HPOU3BOJIBHBIME IOJsMu. s
KOMMYTaTUBHBIX 00/1aCTel MPEJI0KEH aJITOPUTM BBITUCICHUS TPUCOSINHEHHON MaTPH-
IIbI. DTH AJTOPUTMBI UMEIOT CJI0YKHOCTH MATPUIHOIO YMHOXKEHUSI U He TPEOYIOT TOncKa
BEYIIEro JIEMEHTA U BBITIOJTHEHUS MePECTAHOBOK 3/1eMeHTOB MaTpwutl. JIis BEIPpOXK TeH-
HBIX MATPHUI[ OHUW TO3BOJISIOT HAXOJIWTH HEBBIPOKIEHHBIN OJIOK HAUOOJBIIETO pa3Me-
pa. Hpe,ﬂﬂaFaeMbIe AJITOPUTMBI HE Tpe6yIOT TUJIOTUPOBAHUA U HE MEHAIOT MATPUIHYTO
BJIOUHYIO CTPYKTYDPY. DTH AJTOPUTMBI MO3BOJISIIOT pa3pabarbiBaTh COOTBETCTBYIONINE
mapasLIebHBIE TTPOTPAMMBI.
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A parallel algorithm for symbolic solving partial differential equations by means of
Laplace-Carson transform is produced. The problem is reduced to solving linear
algebraic systems with polynomial coefficients, for which efficient parallel algorithms
exist. It permits to construct a fast parallel algorithm for systems of partial differential
equations. An algorithm includes a procedure to obtain compatibility conditions for
initial data.

1 Introduction

An application of Laplace and Laplace—Carson transform is useful in many problems of solving
differential equations (for example [1, 2, 3, 4]) It reduces a system of partial differential equations
to an algebraic linear system with polynomial coefficients. Parallel algorithms for solving such
systems are being developed actively (for example, [5, 6]). It enables to construct parallel
algorithms for solving linear partial differential equations with constant coefficients and systems
of equations of various order, size and types. The application of Laplace—Carson transform
permits to obtain compatibility conditions in symbolic way for many types of PDE equations
and systems of PDE equations.

The steps, at which parallel calculations are possible and reasonable we denote by term
Block. If indexes are contained, the ways of parallelization are pointed by them.

2 Input data

Denote m = (my,...,m,). Consider a system
K M ‘ om
J — f.
DD D) DL IR} 0
k=1 m=0 m
where j =1,..., K, ug(z), k=1,..., K, — are unknown functions of x = (x1,...,2,) € R},
f; € S, aL, arereal numbers, m is the order of a derivative, and k& —the number of an unknown
function. Here and further summing by m = (my,...,m,) is executed for m; +...+m, =m.
We consider all input functions reducible to the form;
; ; i . I;+1
fi(t) = fj(x), o5 <t < tj+1, i=1,..., 1,z = 0,t/"" = oo,
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where

S
) =) P)eh', i=1,...1; j=1,...k (2)
s=1

and P (z) = Y2 cia'.

Denote by A a class of functions which are reducible to the form (2).

We solve a problem with initial conditions for each variable. Introduce notations for them.
Denote by I'V a set of vectors v = (y1,...,7,) such that v, =1, 7, =0,if i < v, and
equals 0 or 1 in all possible combinations for ¢ > v. The number of elements in 'V equals
vt

Denote 3= (B1,...,0,), Bi=0,...,m;, aset of indexes such that the derivative of u*(x)
of the order f; with respect to the variables with numbers i equals ugﬂ(:c(”) at the point
x = 27 with zeros at the positions p for which the coordinates «, of v equal 1. For example,
if zeros stand only at the places with the numbers 1,2,3, then v = (1,1,1,0,...,0). Functions
ugﬁ(xm) must also belong to A . To be short we shall not write down the expressions for
ub ().

The algorithm component is the definition of compatible initial conditions. The system (1)
is to be solved under such conditions.

Data file contains the coefficients, the initial conditions and the right-hand members f;,
I=1,...,K.

The data for functions f; consists of the polynomial coefficients, parameters of exponents,
the bounds of smoothness intervals.

3 Laplace—Carson transform

Consider the space S of functions f(z), = (z1,...,2,) € R}, Rt = {2z : 2,2 0,1 =
1,...,n}, for which M > 0,a = (ay,...,a,) € R", a; >0, i =1,...,n, exist such that for

all x € R the following is true: |f(z)] < Me®™, ax =) a;z;.
i=1

On the space S the Laplace-Carson transform (LC) is defined as follows:
LC f@) s o) =1 [ e fla)da,
0
p=(p1,--spn); P =D1---Pn,
pr = Zpixi, dr = dx; . ..dx,.
i=1

LC is performed symbolically at the class A.

4 Parallel LC algorithm

4.1 LC of a system

Let LC : u* — U, ufm(x(”) — Ugﬁ(p(”)), fj = Fj, the notation p(? is correspondent to the
notation (7). Denote by |||/ the “length” of 4 — the number of units in v, p™ = p{™ ... pm= .
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Block 10
The LC of the left-hand side of the system (1) excluding images of initial conditions is
written formally.

Block 1r
r runs trough the set of multiindexes of ufj p(z").
Then am
LC : TP T ug(x) —
mUk + Z Z Z Hvll ma - Bi—m pnT B"_W"Ugﬁ(pm).
v=1 B,=0 ~el'¥
Denote

mk—ZawZ S ST ()BT g (),

v=1 B,=0 ~eI¥

As a result of Laplace-Carson transform of the system (1) according to initial conditions
we obtain an algebraic system relative to U*

M

K M K
YD " URp) =F - o j=1,... K (3)

k=1 m=0 m k=1 m=0

Block 2k
k runs from 1 to K.

These blocks performs LC of the right-hand parts of (1). A allows a further parallelization
of calculations.

4.2 Solution of algebraic system

Block 3

As a result of Laplace-Carson transform of the system (1) according to initial conditions
we obtain the algebraic system (3) relative to U .

Efficient methods of parallel solving such systems are developed (for example [5, 6]).

At this stage the problem of definition of compatibility conditions arises (see blocks 4s,5).
With respect to compatible conditions we use the inverse Laplace—Carson transform and obtain
the correct solution of PDE system.

4.3 Compatibility conditions

Call a rational fraction "a proper fraction” if the degree of each variable (over C) in numerator
is less then its degree in denominator.

Call a set of equations, defined by conditions

e the solutions of algebraic system may be represented as sums of proper fractions with
exponential coefficients;
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e the denominators of these proper fractions may be reduced to a product of linear
functions.
the class B.

(Note that the class B does not exhaust all cases that admit pure symbolic computations.)

Denote by D the determinant of the system (3), D; the maximal order minors of the
extended matrix of (3). A case when there is a set Q of zeros of D with infinite limit point
at Repp > 0, k = 1,...,n, is of most interest. Solving the system (1) we obtain U* as
fractions with D in the denominators. The inverse Laplace—Carson transform is possible if ay ,
k=1,...,n, exist such that these functions are holomorphic in the domain Rep; > ay . So we
make a demand: D; has zeros at Q of multiplicity not less than multiplicity of corresponding
zeros of D . This demand produces requirements to the LLC images of initial conditions functions,
and after LC ~! transform — to initial conditions. They turn to be dependent. We obtain the
so-called compatibility conditions.

Block 4s
s depends upon the number of relations, from which the compatibility conditions arise.

The blocks calculate the values of numerators at zeros of denominators.

Block 5

The block implements parallel solving of the system of equations, produced by relations for
compatibility conditions.

Block 6k

The blocks perform the LC ~! of U*. Note, that the steps of calculation of multivariate
LC ! are produced sequentially.

5 Example

We take a simple example to demonstrate the method and the places where parallelization is
possible.

It is convenient here to change notations for unknown functions, their Laplace transform,
variables, initial conditions.

Example 1

Take a system of two equations with two unknown functions on Ri.

of 99 _
wtoa = U

f=1y); g=9(zy).
Initial conditions: f(0,y) = a(y); f(z,0) =0b(z); ¢(0,y) =c(y); g(x,0) =d(x),
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Block 1r , r=1,2.

Block 2k , k=1,2.
LC:
flz,y) = ulp,q), g(z,y)— v(p,q).

As a result of LC we obtain the algebraic system:
pu—pa(q) +qu—qy(p) = 1/p,  qu—qB(p) +pv —pd(q) =1/q.

Block 3
Then

_ —awH B¢+ 6 —ypg P ¢+ (o= B¢ — (0p” —14*)pg
pa(p* — ¢%)

P — ’
The denominator D: D(p,q) = pq(p* — ¢*).

Block 4s , s—1.

The set of zeros of D with infinite limit points at the right half-plane is ¢ =p.
Substituting ¢ = p into the nominator of u and v we obtain the compatibility condition:
a—pF+v—0=0.

Block 5
For example we may take 5 =0; ~ = ]%; 0= %; a=0.
Then
b2 Uﬁ_p+2p2+q+2q2+2pq
p+q’ pa(p +q) ‘
Block 6s , s=1,2.
LC—1:
foo 2y, y<uw,
B 2];7 Yy 2 z,
_ [ @ty y<uz,
y2+z),  y=uw
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ITAPAJIJIEJIBHBIN AJITOPUTM CUMBOJIBHOI'O PEIIIEHUS
JIN®OEPEHITNAJIBHBIX YPABHEHII C YACTHBIMU
ITPOMN3BO/IHBIMN

(© Haranua AnexcanapoBHa MaJjiaimmoHOK
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Kawuesvie caosa: mapasiebHble aJTOPUTMBI, KOMIIBIOTEPHAsT ajrebpa, ypaBHEHUS B
JaCTHBIX IPOM3BOAHBIX, HTpeobpasopanne Jlamnaca—Kapcona, ycaoBHS COIVIACOBAHHO-
CTHU.

[Ipencrapmen mapaJulebHBIN aJITOPUTM CHMBOJLHOIO PENIeHHS CHCTEMBI YPABHEHUM
C YaCTHBLIMU [IPOU3BOJAHBIMKA C IIOMOIILIO Ipeobpaszosanus Jlamnnaca—Kapcona. 3agaga
CBOIUTCS K PEIIEHUIO JTHHEHHOH aarebpamueckoil CHCTEMBI C MOJIUHOMHAIBHBIMA KO-
s¢pdunmenTamu, st KOTOPOH CYIIECTBYIOT OBICTPBIE MTAPAJIICIbHBIE AJITOPUTMBI. 3TO
ITO3BOJISIET CKOHCTPYHPOBATHL OBICTPRIN MMapaJsiIebHbIi aJropuT™ s cucreM mudde-
PEHIIMAJBHBIX YPABHEHNN ¢ YaCTHBIMHU TpOoU3BOAHBIME. COCTABHON YACTHIO aJTOPUTMA
ABJIAETCH TIPOLEAYypa MOJyUYEeHU YCJAOBUN COTJIACOBAHHOCTH JIJI HAYAJBHBIX YCJIOBUA.
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Key words: linear programming; tabular simplex method; distributed computing;
parallel optimization; rational computations; arbitrary precision; interval arithmetic.
Techniques of obtaining both exact and guaranteed accuracy solutions of linear
programming problems and methods of increasing accuracy of computations by
distributed computer systems with MPI are subjects of this paper. To obtain the
solutions the rational and arbitrary precision floating point interval arithmetic libraries
are applied. Methods of adaptation of the used data types to MPI are presented. Results
of computational experiments based on introduced parallel versions of algorithms for
solving systems of linear equations and linear programming problems demonstrate
effectiveness of their application.

1 Introduction

Unsubstantiated prejudices, causing errors of calculations are widespread. Some of them are: (1)
distributing property of associativity of addition and multiplication in the field of real numbers
to a finite set of machine “real” numbers; (2) extension of properties of continuous dependence
on parameters of solutions of the system received after the “equivalent” changes to the original
system. Calculations that ascribe non-existing properties to objects of the numerical analysis,
are unproved. Popular commercial packages MatLab, MathCad, etc., and also free package
Scilab have the marked disadvantages. Usage of different number of processors in calculations
in many cases gives substantially different results, demonstrating the need for evidence-based
computing. The potential of available packages supporting symbolic computations does not
allow to solve the real problems of mathematical modeling. For the means of arbitrary precision
computations GMP library can be used. But GMP library does not provide any interface for
using it in parallel computations.

The aim of this work is implementation of exact rational and guaranteed arbitrary precision
floating point interval computations software for parallel and distributed computing systems
with MPI (Message Passing Interface[l]). The paper covers the usage of mpq t and mpf t
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data types from the GNU MP library [2], and mpfi_t interval type from MPFI library
[3](that is built on the top of GNU MP). An important aspect here is the possibility and
effectiveness of adaptation of these types to a multiprocessor environment. MPI interface is an
unofficial standard for building distributed computing systems for a long time. Serialization
and rearrangement to sequential memory layout of rational and interval arithmetic objects for
MPI integration are considered in this paper. We chose GNU MP library for the purposes of
exact computations because it is an open source solution available in all widespread GNU /Linux
distributions and has a good performance. MPFI library is also an open source project and
extends GNU MP; adding interval calculations on top of arbitrary precision floating point data

types.

2 Accuracy of Computations

The GNU MP package contains open source GNU MP library for arbitrary precision arithmetic:
operations on signed integers, rational numbers and floating-point numbers. GNU MP library is
developed for fast operation on both large and small operands. It is fast because it uses whole
words as the base type, applies fast algorithms, depending on the size of the operands. It has
the optimized assembly code for many types of processors and combines speed with simplicity
and elegance of operations.

2.1 Exact Computations with mpq t Type

typedef struct

{
int mp alloc;
int mp size;
mp_ limb t * mp d;

// FILE: gmp.h
//Definition of mpq_t
#ifdef  GMP SHORT LIMB
typedef unsigned int mp limb t;
#else

#ifdef LONG_LONG_LIMB b —_mpr_struct;
typedef unsigned long \
long int mp limb. t: 1{:ypedef struct
f#else . mpz_struct _mp_ num;
typedef unsigned long \ __mpz_struct _mp_den'
int mp_limb_t; }  mpq_struct; |
#endif S 7
#Hendif

typedef  mpq_ struct mpq t[1];

Fig. 1. Declaration of mpq_t type

By the means of mpq_t type exact calculations with rationals are implemented, mpq_t type
is based on structures and functions of C library, numerator and a denominator are mpz_ struct
structures which contain:

e size of allocated memory;
e size of occupied memory;

e pointer to an array representing number.
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Code fragment on figure 1 shows mpq_t type declaration.
GNU MP library contains about 40 functions for mpq_t type. Besides it is possible to apply
any integers functions to its numerator and denominator separately.

2.1.1 Adaptation of mpq t Type to MPI

Effective transmission of mpq t type for MPI environment can be carried out by the means of
incomplete serialization. Details of implementation and efficiency estimation are presented in
the previous papers [4], [5].

2.2 Arbitrary Precision Floating Point and Interval Computation

In a case when problem has such a scale that it is impossible to use exact computations
with rational types, and inaccuracy of solution with hardware floating-point data types
fall outside of admissible limits we can use arbitrary precision floating point data types.
Effective implementations of such derivative data types, unlike rational, are comparable to the
computation time with hardware floating point (with similar length of a mantissa). One of such
data types is mpf _t (multiple precision floating-point). It allows dynamically arbitrary change
accuracy (the length of mantissa). But computations with mpf t data type are approximate,
and inaccuracy is not considered. Data type mpf t can be used in algorithms when result
verification procedure exists allowing to measure inaccuracy and repeat algorithm from some
step with more precision if necessary.

typedef unsigned long mpfr prec t;

typedef int mpfr_sign_t;
typedef long int mp_exp_t; ] typedef long int mp_exp_t;
typedef unsigned long long int mp_limb_t; typedef unsigned long long int mp_limb_t;
typedef struct { typedef struct
mpfr_prec_t|_mpfr prec; |
mpfr_sign_t | _mpfr_sign|, int mp_prec;
mp_exp_t |_mpfr_exp; int _mp_size;
mp_limb_t [ mpfr_d; - mp_exp_t [_mp_exp;
} __mpfr_struct; mp_limb_t F_mp_a:
} __mpf_struct;
typedef struct {
__mpfr_struct left; typedef mpf struct mpf t[1];
_mpfr_struct right;
}__mpfi_struct;
typedef _mpfi_struct mpfi_t[1]; mp_limb_t [ mp_limb_t | ...
| .
| mp size t H mp limb t | Flg. 3. Structure Of mp'F_t type

Fig. 2. Structure of mpfi_t type

For the means of guaranteed solution one can use data mpfi_t type (from the multiple
precision floating-point interval library [3]). The mpfi_t library is based on GNU MP and mpfr
(multiple-precision floating point with correct rounding library [6]). Instead of single floating
point a number in mpfi is represented by a pair of arbitrary precision floating point values (of
mpfr type), they represent lower and upper interval bounds enclosing real value. Unlike mpf,
mpfi allows to obtain guaranteed (due to usage of interval calculations) and accurate results
(due to arbitrary precision and correct rounding according standard IEEE 754, implemented in
mpfr). On figures 2 and 3 structures of data types mpfi_t and mpf_t (for 64-bit architectures)
are shown.
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2.2.1 Adaptation of mpfi_t and mpf t Data Types to MPI

The complexity of effective MPI adaptation of derived types with dynamic sizes exist because
MPI doesn’t provide any interface for passing data types that (1) don’t have sequential memory
layout or (2) have variable length that could be changed multiple times at runtime. Mantissas of
mpfi_t and mpf_t data types are stored out of base structure. In mpf_t structure field mp d
points to mantissa. In a case of mpfi_t field mpfr_d pointers of _mpfr structures points to the
second elements of the allocated memory blocks (the beginning of mantissa), the current length
of mantissa is stored in the first element. Thus, the data can have random memory locations,
and it is impossible to define MPI data type on top of mpfi_t and mpf t types. But still we
can perform effective transmission in two ways:

e incomplete serialization;
e rearrangement to sequential memory layout.

In case of incomplete serialization it is enough packing of the necessary structure fields that
have been painted over at figures 4 and 5.

typedef struct {

mpfr_prec_t| _mpfr_prec; |

mpfr_sign_t|_mpfr_sign} typedef struct

mp_exp_t [“mpir_exp;

mp limb t [ mpT o, int _mp_prec;

b mpfr_struct; int _mp_size;

mp_exp_t [CTMp_exp;

typedef struct { mp_limb_t —mp_o;

__mpfr_struct left; } __mpf_struct; _l
__mpfr_struct right; l>'| -

}_mpfi struct; mp _limb t [ _mp limb t ] ..

[ mp_size_t ] mp_Timb_t ... Fig. 5. Serialization of mpf_t type

Fig. 4. Serialization of mpfi_t type

Depending on the algorithm, if the receiver is not aware of the data types precision of the
sender, mpfr_prec, mp_prec fields should be also serialized and transfered. In some cases,
only _mp_size elements of the mantissa array may be transfered (in the general case _mp _size
is equal to the total length _mp_ prec).

This approach has obvious disadvantage, that in fact we have to implement the MPI transfer
functions by transferring array of bytes (in case of incomplete mantissa transfer - array of bytes
previously unknown size), and in case of collective communication it’s not always an easy task
itself.

2.2.2 Memory Layout Rearrangement for mpfi_ t and mpf t

This approach makes sense in the case when the algorithm operates on the numbers with
precision, that is not changed during the computations. Using the macros shown on figure 6,we
can define the derived types mpfin_t and mpfn_t based on mpfi_t and mpf_t.

Obviously, the structure of types mpfin_t and mpfn_t, as well as arrays of objects of these
types will be allocated in memory sequentially (not including alignment). In this case, all
operations (except for initialization and precision set) that are available for mpfi_t (mpf_t),
may be applied to mpfin_t (mpfn_t) without any restrictions. Initialization procedure is not
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#define mpfi type(prec) \ #define mpf type(prec) \
typedef struct \ typedef struct \
{0 {0
__mpfr_struct left; \ int mp prec; \
__mpfr_struct right; \ int mp_ size; \
mp_limb_t \ mp_exp_t _mp_ exp; \
~mp_d_left[L(prec)+ 1]; \ mp_limb_t * mp d; \
mp_limb_t \ mp_limb_t \
~mp_d_right[L(prec)+1]; \ ~mp_d_real|[L(prec)+ 1]; \
} mpfi struct##prec; \ } mpf structi#prec; \
typedef  mpfi structi#prec \ | typedef  mpf structi##prec \
mpfitprecs# t[1]; \ mpfitprectHt_t[1]; \
MPI Datatype MPI mpfifHfprec; MPI Datatype MPI mpf##prec;

Fig. 6. Declaration of mpfin_t and mpfn_t types macros

fundamentally different from the original. Instead of memory allocation for mantissa simple
initialization of pointers left. _mpfr_d and right. _mpfr_d (_mp_d) with relevant addresses of
mantissa is required (which offset is now constant).

The significant positive factor of this approach is possibility easily declare the MPI data type
on top of mpfin_t and mpfn_t types (for any given accuracy), and use all functions available
for MPI-derived data types without any restrictions.

typedef struct {
struct {

mpfr_prec_t _mpfr_pred___ skip

mpfr_sign_t _mpfr_sign] __ MPLINT| +align

mp_exp_t _mpfr_exp; MPI_LONG_LONG typedef struct

mp_limb_t *_mpfr_d; skip

} left; int _mp_prec; skip

struct { int _mp_size; MP| INT +align
mpfr_prec_t _mpfr_prec skip mp_exp_t _mp_exp; MPI_LONG_LONG
mpfr_sign_t _mpfr_sign MPI_INT] +align mp_limb t * mp d; skip

mp_exp_t _mpfr_exp; MPI_LONG_LONG mp_limb_t _mp_d_real(n]] NxMPI_LONG_LONG
mp_limb t ¥ mpfr d; skip } __mpfn_struct;

} right;

mp_limb_t _mp_d_left[n]; [ NxMP]_LONG LONG Fig. 8. Fields of mpf _t structure included in
mp_limb_t _mp_d_right[n]f NxMPI_LONG_LONG MPI data type

}__mpfin_struct;

Fig. 7. Fields of mpfi_t structure included in
MPI data type

Fig. 7 and 8 show mpfin_t and mpfn_t data types structures in terms of MPI (for 64-
bit architectures). If one declares MPI data type in a way as shown on fig. 7 and 8 skipping
non-colored fields, the pointer to the mantissa won’t be rewritten during data receive and no
adjustments or additional steps need to be carried out during transfer at all.

Another question is memory layout rearrangement effects for performance. Table 1 shows
a comparison of cache misses for initial and modified types. The comparison was made on
the processor with 2 MB second-level cache (32 KB first-level) by solving the system of lineal
equations by Gauss-Jordan elimination (30 equations and 192 bit mantissa precision).
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Table 1

Cache miss test for initial and modified types

H mpfi H mpfin H mpf H mpfn
I refs: 43366674 || 41850711 || 13762859 || 13601951
I1 misses: 23822 21566 10938 10205
L.2i misses: 3456 3447 3236 3228
D refs: 18095665 || 17450618 || 5076607 || 5012224
D1 misses: 84427 65950 46662 38923
L2d misses: 13121 12126 9886 9646
L2 refs: 108249 87516 57600 49128
[L2 misses: 16577 15573 13122 12874

Test shows that modified types has better cache-hit rate than original. But in closer look on
specific functions it turns out that the cache hit rate is better only for functions like comparison,
addition, subtraction, etc., but somewhat worse for multiplication and division. There is a
slight superiority of the original data types under increasing problem size to 3000 equations
and mantissa precision to 1024-2048 bit.

3 Parallel Simplex Method

Simplex-method application for real-world linear program problems keeps beyond comparison in
spite of appearance of polynomial algorithms [7]. At present two techniques of simplex-method
software engineering are in use:

e tabular simplex-method;
e inverse pivotal matrix method (revised simplex-method).

Preserve generality let us demonstrate its characteristic property with an example linear
programming problem
max {c'z : Az =b>0, z>0}. (1)
3.1 Tabular simplex-method

On k-th iteration it re-counts the simplex table

‘ 20 = T cg(k)B(k)*lA ‘ cg(k)B(k:)*lb ‘

9

S® = B(k)~*A z® = B(k)~'b

here B(k) is the pivotal matrix containing matrix A columns related to the basic variables,
CcB(k) is criterion function coefficient vector related to the basic variables. At that right simplex
table column contains vector *) = B(k)™'b of the basic variable values, and the criterion

function value cg(k)B(k:)*lb for current solution. The upper row contains vector z* = —¢7 +
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cg(k)B(kz)_l of relative evaluation replacement for nonbasic variables. Test for optimality of the
current basic solution is nonnegativity of vector z.

If optimality test no passed then there is nonbasic variable x; : zi(k) < 0. Let us introduce
set L ={l: Sl(ik) > 0}. If L =0 then the criterion function is unbounded. Otherwise incoming
of x; to basic variables leads to criterion function increment

(k) ()

Tz
A= T (2)
5
here
)
I* = arg min —~
ier g\k)

defines the variable outgoing from basic ones.

Conversion from k-th iteration simplex table to (k- 1)-th one is realized by Gauss-Jordan
elimination for i-th column of the current simplex table. Principal computation capacity is
block S converting that requires ©(mn) algebraic operations (m is number of rows, n is
number of columns of matrix A).

3.2 Inverse pivotal matrix method

On k-th iteration it re-counts matrix B(k)™' that requires ©(m?) algebraic operations
(m < n). At that for each iteration it is necessary

e to compute basic variables value ) = B(k)~'b (©(m?) algebraic operations);
e to compute dual variables value y” = cf, s B(k)~" (©(m?) algebraic operations);

e to check permissibility of the dual solution ¢ < yTA ( no more O(mn) algebraic
operations).

If the dual problem is impressible there is nonbasic variable z; : sz) =—c'+yTA, <0.If
set L={l: Sl(ik) >0} =0, where Si(k) = B(k)"'A; then the criterion function is unbounded.
Otherwise incoming of z; to basic variables leads to criterion function increment defined by

formula (2). So application of inverse pivotal matrix method is realized when
e n essentially surpass m;
e matrix A is sparse;

e it is required to solve both primal and dual problems.

3.3 Intercomparison of methods

In the case of tabular simplex method, columns decomposition is preferred due to calculations
and communication specific (fig. 9). All the columns 1,2,...,;n can be divided in equal
proportions between the processes K = 1,2,...,N , the vector of basic variables and the
criterion function value are sent to all processes and are processed independently. So the basic
steps of one algorithm iteration are following;:
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Process K
SUO = Z Z[(Kgl)n.l'i'l Zl—(Kjf\fl)n-|+2 e Z"%“
SQ() = X31 52’—(}(1—\]1)711+1 52’—(}(]—\[1)71-‘Jr2 s SQ[%]

Fig. 9. Simplex table decomposition

1. Choose the leading column from non-basic coefficients of the objective function (based
on some common criteria each process selects from the columns it has).

2. The global exchange between the processes with the values obtained in step 1 and choosing
optimal (pivot column for all processes).

3. Process that holds leading column chooses what variable to remove from basic ones (the
choice of the leading line).

4. Process holding pivot column globally distribute numbers of the variables being included
and excluded from the basic variables, as well as the pivot column.

5. Each process carries out the computation of a new canonical form by the rules of simplex
method on the columns it has.

From the above we can conclude that the parallel version of algorithm is not much more
complicated than sequential. It uses only minimum number of collective communications. All
that should lead to a uniform loading of the system and high efficiency of parallelization [8].

The main difficulty arises when procedure of generating the basic plan is introduced. If
simply add the necessary slack and dummy variables, and discard that columns after the first
phase, the load will not be uniform. This problem can be solved in two ways:

e Redistribution of columns after the first stage, that is difficult and costly.

e Distribute the matrix in a way that each process got approximately equal number of
columns of the original problem and columns that appear during the computation of the
initial basic plan. This procedure requires for each process to know how many columns
to discard after the first phase.

In the case of revised simplex method, the original matrix must be available to all processes
because it is unknown what variables become basic and by which process they will be handled.
Additional overhead for communication during computations lead to the fact that one cannot
create an simple effective parallel version of the revised simplex method algorithm [9].

3.4 Algorithm of Parallel Simplex Method

This approach to parallelization of simplex method was implemented as MPI program Plinpex
(parallel lineal exact solver). It uses rational data types from GNU MP library for exact
computations or arbitrary precision floating point interval data types from MPFI library
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(depends on compilation flags). A set of gcc 4.4.3 compiler, gdb debugger, efence and valgrind
profiler was used. Implementation, testing, and some computational experiments were performed
on gentoo gnu/linux based cluster of workstations that we built from computer class resources
of department laboratory.

Algorithm Plinpex:

1:
2:
3:
4:
)

10:

11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

26:
27:
28:

29:
30:
31:
32:
33:
34:

for each of N processes initialize MP| environment and identify itself via its MPI rank .
if rank =0 then
read input problem file in MPS [10] format;
parse MPS file and save variable names;
initialize and fill matrix A, vector of objective function coefficients ¢ and linear
constraints b;
expand matrix A with slack and dummy variables for basic plan finding; initialize basic
variables vector, dummy objective function;
end if
call MPI barier and initiate main solve function
broadcast common problem data from rank 0 process (problem; size and the number of
slack and dummy variables);
evaluate number of main and dummy columns by knowing its rank and total number of
processes N ;
if rank <> 0 then
initialize memory for the part of A matrix, vectors of linear constraints b, dummy and
objective function ¢, basic variables vector;
end if
broadcast the linear constraints and basic variables vector from rank 0 process;
if rank =0 then
for 1=1to N do
send part of main and dummy columns of A matrix to rank 7;

end for
else

receive its main and dummy columns of A matrix;
end if
call MPI barrier to synchronize of main computation loop
repeat

choose the pivot column from columns this process handles;
call MPI all reduce and choose pivot column globally, let’s assume the process that handles
pivot column has rank L;
if minimum found then
if step one then
basic plan found, exclude dummy column and replace dummy objective function
with primary one;
else
solution is found, goto 42;
end if
end if
if rank = L then
chose a variable excluding from basic variables and pivot row;
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35:  end if

36:  indexes of including and excluding to/from basic variables and broadcast the pivot column
from rank L to other processes;

37:  apply simplex method transformation on columns handled;

38:  if entering/excluding basic variables are handled locally then

39: update basic variables vector;

40: end if

41: until solution is found

42: if rank =0 then

43:  output the problem solution;

44: end if

45: terminate MP| environment and exit.

4 Computational Experiments

Computational experiments were performed on “SKIF Ural” cluster of South-Ural State
University. Brief specifications are presented in table 2.

Table 2
The specifications of computational platform
CPU type (per 1 blade) 2 quad core Intel Xeon E5472 3.0 GHz
System Memory (per 1 blade) || 8 GB
Network type InfiniBand (20Gbit/s, max latency of 2 ms)
Operating System SUSE Linux Enterprise Server 10 x86_ 64

4.1 Experiment with Guaranteed Accuracy Floating Point Types

Parallel version of Gauss-Jordan elimination algorithm adapted for computing with mpfi t
(mpfin_t) and mpf t (mpfn_t) was used. The effectiveness of parallelization is shown on fig.
10.

It should also be noted that when precision (mantissa length) is increased the efficiency of
parallelization is also increased (table 3).

4.2 Linear Programming Problems Solving Experiment

Linear programming problems from Netlib library |11| were used as input data for computational
experiment. This library contains complex problems that are often used for testing linear
programming solving software systems. For the experiment we chose problems with various
density and ratio.

Results with exact rational mpq_t type are presented on figure 11 , arbitrary precision
floating point data types (mpf_t, mpfn_t) and interval data types (mpfi_t, mpfin_t) are shown
on figure 12.

5 Conclusion

Methods for the effective application of arbitrary precision floating point (interval) data types
in MPI environment in this paper are suggested in the work. Interval arbitrary precision types
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Fig. 10. Effectiveness of Guaranteed Accuracy Floating Point parallelization

for Gauss-Jordan elimination

Table 3
Time resources for Gauss-Jordan elimination
double mpf mpfn mpfi mpfin
N 53 64| 192| 704 64| 192| 704 192 192
1 43.04 || 1250.99 | 1817.42 | 6203.19 || 1238.50 | 1796.03 | 6219.70 || 3943.99 || 3817.11
2 22.06 627.28 | 913.78 | 3106.40 617.31 | 910.50 | 3132.24 || 2747.88 || 2073.00
4 20.41 315.35 | 489.06 | 1561.31 312.38 | 463.75 | 1573.92 || 1464.61 || 1072.29
8 18.83 171.44 | 269.83 | 795.95 166.03 | 239.94 | 804.95 634.02 537.36
16 5.98 86.91 | 123.35 | 413.09 85.19 | 124.01 | 410.43 265.07 261.93
24 1.98 60.12 83.07 | 325.72 61.50 84.44 | 277.53 225.70 172.57
32 1.68 47.70 66.41 | 212.97 47.30 68.72 | 220.01 144.66 133.10
64 1.53 27.90 40.98 | 135.55 28.06 40.97 | 123.79 87.36 84.79
96 1.54 19.85 29.25 92.61 19.88 27.57 84.55 60.14 57.31
128 2.01 16.86 23.41 77.10 18.53 26.31 76.18 49.15 47.90
a0 120
- 100
L2 o, @
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%_10 g 40 ‘Il
5 0
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Fig. 11. effectiveness of rational type
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give advantages of obtaining guaranteed results, that include rounding errors which can be
analyzed to decide whether current precision of solution is sufficient. Interval arithmetic has
main disadvantage of enclosures being too large but with arbitrary precision types we can cope
with this problem to some extent and solve even high dimension problems. It should also be
noted that the positive effect of parallelization in this case is not only in computation time
reduction but also in ability to solve problems of higher dimension, because it is easy enough
to reach memory limits, when the matrix will not fit entirely in memory of the single node.

All reviewed commercial programs use basic floating point data types and therefore they can
not guarantee the accuracy of solutions. An exception from a number of programs, that does
not provide guaranteed results are two open source implementations of simplex method, that
use exact rational computations algorithms based on GNU MP library; and that fact inevitably
leads to a substantial increase in computation time. However, they do not take advantage of
parallel programming techniques which, with a skilful use, reduce the computation time and
increase the number of problems that can be solved (problems with more dimensions).

The aim of this work was implementation of exact rational and guaranteed arbitrary
precision floating point interval computations software for parallel and distributed computing
systems called Plinpex. Software Plinpex use proposed methods for data types adaptation to
MPI and parallel simplex method algorithm. The proposed algorithm uses only two collective
communication at each iteration of the main computational loop of the program.

The computational experiments showed that the implemented methods are effective for
problems of different dimensions, ratio and density. The usage of rational and arbitrary
precision floating point interval data types adaptation to MPI gives ability to obtain exact
and guaranteed results respectively. Examination of computational experiment result reveals
efficiency of implemented parallel simplex method algorithm. According to experiments results
the efficiency of parallelization depends on precision and it is about 70-80% (and grows with
precision increase), and even higher for exact rational computations. However, the total time
of computations can be improved with several algorithm optimizations. It is the subject for the
further work.
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Karouesnie caosa: nHEHOE MPOTPAMMUPOBAHME; METOJ CUMILIEKC-TabJINIL; paciipejie-
JIEHHBIE BBIUUCIEHUS; TMapaJuie/ibHas ONTUMU3AINS; IPOOHO-PAITMOHANBHBIE BBITHCTIE-
HUHA; TPOU3BOJIHLHAA TOIHOCTD; UHTEPBAIbHAA aAPUPMETHUKA.

[IpeanveroM cTaTby ABJSIOTCS CIIOCOOBI MTOJIYYEHNUsT KAK TOYHOTO PEIeHUsi, TaAK U TPU-
OJIMKEHHOTO PeIeHnd C TAPAHTUPOBAHHON TOYHOCTBIO, & TAKYKE CIIOCOOBI MOBBITIEHNS
TOYHOCTH BLITUCIEHNH Ha PACIpPe/IeIeHHBIX BEITUCIUTENbHBIX cucTemax ¢ MPIL. [l no-
JIVIEeHUdA TAKUX PEITeHUH MPUMEHSIIOTC TPOOHO-PAIMOHATBLHBIE BRITUCICHUT 683 OKPYT-
JIEHUSI, BBIYMCJIEHUS HAJI YUCJIAMU C IJIABAIONIEN TOYKON MPOU3BOIBHOM HALIEPE 3a/1aH-
HOM TOYHOCTBHIO W MHTEPBAJIbHBIE BIYUCICHUS C TAKUME 9ucaaMu. [IpencraBiens: Crio-
cOOBI AJANTAIINY IPEITOKEHHBIX TUIIOB JaHHBIX K MPI. Pe3ynbTarsl BEIMUCINTEIHHOTO
9KCIIEPUMEHTA Ha Pa3paboTaHHbIX HAPAJLICbHBIX AJTOPUTMAX PEIEHUsT CUCTEM JIMHEH-
HbIX ajrebpanyvecKux ypaBHEHUH U 3a/1a4 JUHEHHOr0 TPOrPpaMMUPOBAHUS TOKA3bIBAIOT
3P HEKTUBHOCTD UX TPUMEHEHHS.
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PARALLELIZED COMPUTATION OF
EXTENDED UNIVERSAL GROBNER BASIS

(© Dmitry Alekseevich Pavlov
Saint-Petersburg State Polytechnical University, Polytechnicheskaya 29, St.-Petersburg,
195251, Russia, Post-graduate Student of Applied Mathematics Department,
e-mail: dmitry.pavlov@gmail.com

Key words: universal Grobuner basis; polynomial ideal; Young diagram.

The article presents an algorithm to calculate Extended Universal Grébner Basis
(EUGB), working on wide range of polynomial ideals. The EUGB(2l) of a polynomial
ideal 2 is defined as a finite [1] set of polynomials {f;} whose Young diagrams Y'(f;)
meet the following condition: dim(L(Y (f;))NA) =1 (where £ denotes the span of a set
of polynomials in the quotient algebra of the ideal). It is known that the EUGB contains
the Universal Grébner Basis. The algorithm is based on geometry of Young diagrams
in Z‘i , and finds the polynomials of EUGB mostly independently, which makes it able
to run in parallel. An outline of the parallel version of the algorithm is given.

1 Notation and Background

Let K[x1,...,24] be a polynomial ring over a field K in d variables X = {z1,...,24}. The
space of monomials in these variables can be trivially identified with the lattice Zio. Here
and after, we make no difference between the monomials and integer vectors with nonnegative
coordinates—the elements of the lattice.

A polynomial ideal [2], generated by polynomials (fi,..., fs), is defined as the following
infinite set of polynomials from Klxy,..., z4]:

(fi,... fs) = {Zhifi:hl,...,hs EK[:L‘I,...,xd]}.
i=1

It is known that the ideal can have more than one possible set of generators, each of which
is called a basis of the ideal [2].
Let > be a total order on Zio . It is called admissible, when it meets the following condition:

e a0 foreach a #0;
o If > (3, then v+ > 3+~ for each ’yelio.

We denote as LT, (f) the leading term of the polynomial f, that is, the term whose
monomial is the biggest according to the admissible ordering > .

Let 2 be a polynomial ideal in K{zy,...,24) and > be an admissible monomial ordering.
A finite set of polynomials G € 2 is called a Grobner basis GB, (2() of 2, if the leading term
of any polynomial from 2( is a multiple of some leading term of a basis polynomial [2]:
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{LT-(9:) - 9 € G}) = {{LT-(f) - f € A}).

The Grobner basis G of the ideal 2 has two important properties: first, it generates 2,
and second, every polynomial g € 2 has a normal form r, defined as a result of polynomial
reduction of ¢ w.r.t. G with the monomial order > :

g=hifi+--+hsfs+r, hi,r € Klzy,...,x4).

By the definition of polynomial reduction, no term of r is a multiple of any of LT, (f;) (*).

2 Coideals, quotient algebra, and FGLM algorithm

The nondivisibility condition (*) has a convenient geometrical interpretation: all monomials of
r are positioned “under” the monomial ideal, formed by {LT(f;), f; € GB.(2()}. That is, they
belong to the coideal Co(GB.()) = Zi0\<{LT(fZ-)}) .

All possible normal forms of polynomials of 2 w.r.t. GB, () belong to L(Co(GB.(4))),
where L denotes the span of a set of polynomials in the quotient algebra of the ideal. We
denote it Q. (), as it actually determines the quotient algebra of the ideal 2 (fig. 2):

Qe (A) ~ Klxy,...,zq]/A.

'y
ys o u\\ o kY o o
4 .
o " a at &, o
¥ty
yB( < o [~ ) @
2 B )
y [=] o [=] a
=y +y
u [} o 3 - >
Y-
1 = %2 %% # z* %" "

Fig. 1. The quotient algebra of an ideal generated by {y* + zy, z%y? +y, 23y — ¢®}, is in turn
generated by monomials, underlying the dashed area
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We call monomials {m;} (not necessarily finite set) linearly independent w.r.t. 2, if the
intersection of their span with 2l is also zero:

L({m:} n2A) = {0}.

The ideal 2 clearly do not contain any normal forms w.r.t. 2, except the zero polynomial:
Q. 2ANA={0}.

Hence, the monomials from the coideal Co(GB, (A)) form a linearly independent set. But as
soon as we add to this set the leading monomial of any polynomial of the Grébner basis, we
have this polynomial within the linear span of the set:

L(Q-(RA) ULT(f;)) N2 = (fi),

and the dimension of this span is obviously equal to 1:
dim(£(Q.- () ULT(f)) N2A) = 1.

This way of Grébner basis polynomials construction is used in FGLM [4] algorithm, which
computes a Grobner basis for an arbitrary monomial order >’ given another Grobner basis for
another monomial order > . Basically, the FGLM algorithms incrementally builds the coideal
(starting from zero monomial), following the monomial order >, until the monomials are not
linearly independent. After they become linearly dependent, the corresponding polynomial of
the Grobner basis it calculated, and then the algorithms steps back and goes on, never adding
that “linearly dependent” monomial again.

The FGLM algorithm has a limitation: it accepts only zero-dimensional polynomial ideals—
the ideals whose quotient algebra is generated with a finite number of monomials. In another
words, the coideal Co(GB,.(A)) in this case is finite, i.e. zero-dimensional.

3 Universal Grobner basis and Young diagrams

We denote as UGB(2() the universal Grébner basis of the ideal 2: the union of all possible
Grobner basiss with all admissible monomial orders. Robbiano [3] has shown that the UGB is
always finite.

We define a d-dimensional Young diagram as a subset of Zio lattice, with the only
requirement that if it contains some monomial m , it must also contain all divisors of m .

We call a Young diagram of a polynomial r € 2 the one formed by the terms (monomials)
of r, that is, a union of monomials of r and all their divisors (fig. 3).

LIZ'y4

z%y

1.4

Fig. 2. Young diagram of polynomial 5zy* + 2x3y> + 2y? — 25y + 8x*
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For every polynomial f € UGB(2) the following condition is hold [1]:
dim(L(Y(f)nA)) = 1. (1)

This condition does not guarantee that the polynomial f is a part of UGB(2l); nevertheless,
this condition is easier to check, as it does not imply any admissible monomial order.
We denote EUGB(2() the Extended Universal Grébner basis of the ideal 2 :

EUGB(®) = {f € 2 : dim(L(Y (f) N 2A)) = 1}.

The EUGB() is always finite [1]. Clearly, UGB(2l) € EUGB(2). Unlike the finding of
UGB(2), the finding of EUGB(2l) is done via geometrical and combinatorial operation on
z:,.

4 Finding EUGB(2()

The described algorithm searches for Young diagrams whose spans have a one-dimensional
intersection with the ideal 2, and this intersection is itself an ideal generated by some
polynomial from EUGB(2).

The following global variables are used:

e *basis* — an arbitrary Grobner basis to start with; for example, a Grobner basis w.r.t.
degrevlex monomial order. It is needed for checking the linear independence of the
monomials of Young diagrams.

e xdiagrams* — a list of found diagrams that fulfill the condition (1). Each diagram is
defined by a list of nondivisor monomials (i.e. “corners” of the diagram. At the start, the
list of diagrams contain the Young diagrams of the polynomials of the *basis*. (Although
it could be empty, but then the procedure would have taken more time.)

e xbad-coideals* — a list of coideals that do not contain diagrams of interest of size less
than MAX-SIZE. At the start, this list is empty.

The following helper functions are mentioned but not listed:

e nondivisors (poly): accepts a polynomial and returns its monomials, that are not
divisors of any other monomials of this polynomial.

e contains-divisors-of (monomials, diagram) finds among the monomials the divisors

of diagram’s“corners”.

e remove-multiples-of (monomials, corner) removes from monomials the ones that
are multiples of corner.

e intersect-with-ideal (sequence, basis) checks the intersection of a span of the
sequence and the ideal, generated by basis. If the intersection is not zero, it is assumed
1-dimensional, and the resulting generating polynomial is returned.

e coideal-belongs (inner, outer) checks that the inner monomial coideal is a subset
of the outer.
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e closest-to-origin (list) returns the monomial from the list that is closest to the
origin.

As the first step, the algorithm outputs the polynomials of the given *basis*, which clearly
meet the condition (1), and saves the diagrams of these polynomials. After that, the monomial
coideals not containing the found *diagrams* are enumerated.

find-eugb (*basis*):
*diagrams* < {}
for all poly € *basis* do
yield poly
xdiagrams* < *diagrams* Unondivisors(poly)
end for
repeat
oldsize = size(*diagrams*)
process-coideals(*diagrams*)
until size(*diagrams*) = oldsize

In order to prevent duplicating diagrams in the output, each diagram is being searched for in
a monomial coideal, which does not contain at least one “corner” of already found *diagramsx.
Such a coideal (there can be many of them, but not infinitely many) is computed by the recursive
procedure process-coideals. Once it is found, the find-polynomial function is invoked for
this coideal.

process-coideals (diagrams, coideal = {}):
if diagrams = {} then
find-polynomial(coideal)
else
diagram < any of the diagrams
if contains-divisors-of(coideal, diagram) then
process-coideals(diagrams\diagram, coideal)
else
for all corner € diagram do
new-coideal < corner Uremove-multiples-of (coideal, corner)
process-coideals(diagrams\diagram, new-coideal)
end for
end if
end if

The next procedure accepts a coideal and grows a Young diagram inside it, starting from an
empty diagram, and adding monomials one-by-one, until the condition 1 is met. On each step,
from all monomials (“dimples”) available for addition, the one closest to the origin is selected.

As the coideal may be infinite (especially in case we are dealing with a non-zero-dimension
polynomial ideal), the procedure is forced to stop once the size of the coideal reaches MAX-SIZE.

find-polynomial (coideal):
for all bad-coideal € *bad-coideals* do
if coideal-belongs(coideal, bad-coideal) then
return
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end if
end for
seq « {}
dimples < {0}
while dimples # {} do
if |seq| > MAX-SIZE then
print Linear-dependent Young diagram not found in coideal.
*bad-coideals* = *bad-coideals* U coideal
return
end if
new-monom <— closest-to-origin(dimples)
seq < seq U new-monom
poly < intersect-with-ideal(seq, *basis*)
if poly # 1 then
*diagrams* ¢<— *diagrams* U support(poly)
yield poly
end if
dimples < update-dimples(new-monom, dimples\new-monom)
end while
The helper procedure update-dimples adds a new “dimple” to the list of available monomials
for the next step of diagram growing, and removes its divisors from the list.

update-dimples (dimples new-cell):
for all v € X do
if Ac € dimples:c < v -new-cell then
dimples < dimples U v - new-cell
end if
end for
return dimples

The above algorithm is able to find the polynomials of EUGB(2(), whose Young diagrams
are of size less than MAX-SIZE. The size limit can be discarded for zero-dimensional ideals, where
the endless growing of a diagram of linearly independent monomials is theoretically impossible.
On all other ideals, the size limit allows to avoid endless loops, but can lead to loss of some
EUGB polynomials with too big Young diagrams.

Unfortunately, there is no possibility to give any reasonable estimation for MAX-SIZE that
would guarantee the generation of entire EUGB. Obviously, the size of a Young diagram of a
polynomial can not be less than its degree; and the best known estimations on the degree of
Grobner basis elements are 22" for lex ordering [5] and k2 +1 for grevlex ordering [6] (where
k is the maximum degree amongst the generators of the ideal).

5 Parallelizing the EUGB finding algorithm

A lot of operations in the algorithm described above can be run in parallel. While process-
coideals in the original algorithms outline is called step-by-step, with each next step having
one more diagram, it is possible first to calculate a few coideals to search in, then search
for EUGB polynomials in each coideal independently, using a separate working thread. The
following statements should be considered when implementing the parallelized EUGB finding:
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6

e It is possible that the parallel algorithm would find the same Young diagrams simultaneously
in different computing threads. While this overhead is not likely to be completely
eliminated, some techniques would help (see below).

e Fach coideal given to the working thread should not contain any of the *diagrams*
found so far. Also, the less monomials the “current” processed coideals have in common,
the better.

e To further decrease the possibility of finding duplicate diagrams simultaneously, the
following principle should be used when selecting the next monomial for diagram increment
(in addition to closest-to-origin): once the monomial got into the diagram being built
by a working thread, it is better not to add this monomial to a diagram being build in a
neighbor working thread; this should be done only if no other options are left.

e Once all the working threads are done with their Young diagrams and return some
polynomials, the control flow should go back to the main thread, where the results
are stored, the duplicates are eliminated, and the new portion of monomial coideals is
calculated for the next parallel computation step.
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ITAPAJIJIEJIBHOE BBIYVICJIEHVE PACITIMPEHHBIX
YHUBEPCAJIbHBIX BA3NICOB I'PEBHEPA

© HAdmurpuii Anexkceepuu IlaBsioB
Cankr-ITerepOyprekuii ToCyIapCTBEHHBIN TOINTEXHUYECKWT yHUBepcuTeT, [losmmrexandeckas,
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Karueswvie caosa: yamsepcaabubiii 6a3uc ['pébruepa; moanHOMUATLHBIN HACAT; TUATPAM-
ma Onra.

B crarbe npepcraBiieH aJTOPUTM BBIYHMCJIEHUsT PACIIMPEHHOTNO YHUBEPCAIBHOTO Oasu-
ca I'péonepa (EUGB), paborarorumit Ha MHUPOKOM KJIacCe MOJUHOMHUAIBHBIX HICATIOB.
EUGB(2l) noaunomuansHoro uieana A oupejiesén kak KoHednoe [1] muoxecrso no-
JMHOMOB  f;, ubm jmarpammbl FOura Y (f;) yuoBIeTBOPAIOT CieytoemMy yCaoBHIO:
dim(L(Y(fi))N2A) =1 (rme £ obosHadaeT JUHEHHYIO 000J0UKY MHOKECTBA TTOJHHO-
MOB B hakTopaaredpe naeana). zsecrno, aro EUGB comep:kut yauBEpCaILHBIN Gasnc
I'pébuepa nmeasa. AITOPUTM OCHOBAH Ha TeOMETPHIECKUX CBOHcTBax amarpamm FOH-
ra B Zi, u seventsl EUGB Haxomarcs wM 1o GOJBINEH 9acTi HE3ABUCUMO JPYT OT
IpyTa, 9TO TO3BOJSIET BLIYHCISITDL WX TMapalieabHo. B mociaenneit qactn craTthu gaHa
cxXeMa TaAPAJIIeTH3AIUN AJTOPUTMA.
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POLYNOMIALS BASED ON THE METHOD OF HOMOMORPHIC IMAGES

(© Oksana Nikolayevna Pereslavtseva
Tambov State University named after G.R. Derzhavin, Internatsionalnaya, 33, Tambov,
392000, Russia, programmer of Algebraic Computing Department,
e-mail: Pereclavtseva@rambler.ru

Key words: computing characteristic polynomial of matrices; parallel algorithm; method

of homomorphic images; cluster.
There are produced parallel algorithms for computing the characteristic polynomials

for integer and polynomial dense matrices. The algorithms are based on the method
of homomorphic images in the ring of integers and in the ring of polynomials.We have
obtained an upper bound for numerical coefficients of a characteristic polynomial. There
are stated and discussed results of experiments with parallel algorithms for computing
the characteristic polynomials of integer and polynomials matrices. The experiments
with parallel algorithm are conducted on cluster MVS100k of Joint Super-Computer
Center RAS.

1 Introduction

Computation of the characteristic polynomials for dense matrices is a classical problem of
computing algebra. Let’s give overview of the basic results.

In 1881 Leverrie suggested one of the first methods for computing the characteristic
polynomials of matrices over ring[1]. Faddeev D.K. in 1943 has offered modification of Leverrie’s
method [2]. This method also can compute an adjoint matrix. The Leverrie’s algorithm (with
Winograd’s improvement [3] (p.656)) demands ~ 4n35 ring operations, Faddeev’s algorithm
demands ~ 2n* ring operations for computing the characteristic polynomial of the matrix of
order n x n. The basis of these algorithms is computation of matrix degrees. It allows to use
parallel matrix multiplication to obtain the parallel algorithms for computing the characteristic
polynomials. We notice that till now Leverrie’s and Faddeev’s algorithms have been the best
parallel algorithms although much improvement of consecutive algorithms for computation of
characteristic polynomials have been done.

Seifullin’s algorithm (2002) [4] has less ring operations (~ 1/2n*). But his algorithm
cannot work parallel because it is strictly consecutive and is not recursive. For the same reason
Malaschonok’s algorithm (1999) [5] with complexity ~ 8/3n® and its modification (2008) [6]
with complexity ~ 7/3n® also cannot be write in parallel form. These two algorithms have the
least number of ring operations.

Danilewsky’s algorithm (1937) [7], Keller-Gehrig’s algorithm (1985) [8], Pernet-Storjohann’s
algorithm (2007) [9] are the best for computation of characteristic polynomials over a finite field.
It demands ~ 2n3, O(n*logyn) and O(n*) operations over a finite field accordingly. Here
O(n®) is a complexity of matrix multiplication. These algorithms are the asymptotic best
algorithms for computation of characteristic polynomials over a ring of integers and over a ring
of polynomials with integer coefficients if the CRT algorithm is used.
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This work is directed to development of parallel methods for computation of characteristic
polynomials of dense matrices. The considered parallel algorithms are based on the method
of homomorphic images. It is do due to the fact that modular arithmetics assumes natural
parallelism since computation of characteristic polynomials for each module is independent and
parallel. In Section 2 there is a detailed description application of the method of homomorphic
images to a ring of polynomials of many variables and to a ring of integers is described detail.
In Section 3 an upper bound of numerical coefficients of a characteristic polynomial is obtained.
This upper bound is necessary for application of the method of homomorphic images.

Algorithms for computation of a characteristic polynomial over a finite field for the different
sizes of matrices will show different time. Therefore, it is needed to realize various algorithms
for computation of characteristic polynomials, to compare them experimentally and to reveal
the most effective ones. Some of the methods have been realized and the experiments have
been made. In Section 4 the parallel algorithm for computation of characteristic polynomials
of integer and polynomial matrices is described. In Section 5 results of the experiments with
the parallel algorithms are discussed.

2 Application of the method of homomorphic images for
characteristic polynomials computation

The method of homomorphic images is described in work [10]. We will apply to the method of
homomorphic images for computation of characteristic polynomials of polynomial matrices of
many variables.

The general circuit of a method of the homomorphic images applied to a ring of polynomials
of many variables Z|xy, ..., 2] is the following.

Let A= (au(z1,...,2)), 1 <p<n, 1 <v<n, beapolynomial matrix,
Ae Zm My, o xyl, f= (D)"Y D00, filw, .. z)y™ ") isits characteristic polynomial,
f € Zxy, ..., xy].

Let mg be a hight degree of a variable z,, 1 < s <t in polynomials f;, 1 <i < n and
£ be a greatest absolute value of numerical coefficients.

0) Let’s choose h prime numbers: pi,...,p, so that the inequality was fulfilled
log, B < logy(p1 - - - pr) - Then we will pass to homomorphic images of elements a,,, at mappings

Do, w] = e, .., 2 /oo, .., z1)
Denote
Lz, ..., x| [Dilza,. .. &) = Ly, (21, . .. 4]
1) Let’s choose my; polynomials: xy,zy — 1,...,2 — (my — 1). Then we will pass to

homomorphic images of elements a,, at mappings

Lp; [,y = Ly, 21, .. xe) [ (e — J) Ly, |21, - ., 2]
(0 < j <my—1). The following isomorphism takes place

L, [T1, .- @] [(@r — §) Ly [0, - -y 4] ~ L [T, . . T,
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2) Let’s choose my_; polynomials: x; 1,2, 1 —1,..., 241 — (my_1 — 1). Then we will pass
to homomorphic images of elements a,, at mappings

Lip; |1,y t1] = Ly, (21, - - o 2] /(@021 — J) ~ Ly, |21, - ., 24—2),

0<j<m g —1).

Let’s continue toconstruct similarly the homomorphic images of elements a,, for each
variable z5,5 =t —2.,1. As a result we will pass to homomorphic images in Z,, and we will
obtain hmims - --m; matrices

Mijl...thZZixna lglgh, lgjléml, ceey 1<]t<mt

Let’s calculate characteristic polynomials of matrices M;;, j, by means of some algorithm
over a finite field. We will obtain hmyms - --m,; polynomials f;;, ;(y), 1 <i<h, 1 <j; <
my, .., 1< Jp <my.

Computation of a required characteristic polynomial is found by means of the Chinese
remainder theorem upside-down.

Starting with m; images

{fij1---jt711(y)7 fijl---jt—12<y)7 s 7fij1---jt717m (y)}

of the polynomial f;;, j, ,(x;,y) we will restore this polynomial by means of the Chinese
remainder theorem.
Also starting with m;_; images

Uigrgiat (@6, 9)s figiogea2(@e,¥)s s fiiejo—ames (T, y)

of the polynomial f;;, j, ,(zi—1,2¢,y) we will restore this polynomial. And so on.
Having fulfilled restoring on all variables, we will obtain k& polynomials

{Fi(z1,...,20Y), .., Fp(z1, ..., 2,9) },

in factor rings 7Z,,, ..., Zy,, accordingly.
The characteristic polynomial of the matrix A is recovered on these h polynomials.

3 Upper bound of coefficients of characteristic polynomials
over rings Z and Z[zy, ...,z

For program realization of modular algorithm for computing of a characteristic polynomial of
a matrix is necessary to know numerical modules pq,...,p, and polynomial modules i,z —
L...,09 —(my = 1);...;24,2, — 1,..., 2, — (my — 1) for a polynomial matrix .

The best upper bound which is known today for the coefficients of a characteristic
polynomial of an integer matrix is obtained in the work [11]. According to that the number of
bits in the coefficients of a characteristic polynomial does not exceed

Hn,a = g(log2 n+ 2log, a+ 0,22),
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when n is order of the matrix, a is the greatest absolute value for numerical coefficients of
matrix elements.

The array of prime numbers is supposed to be set. Choosing from that the prime numbers
and calculating their product it is easy to choose sufficient number h of modules. The inequality

Hn.a < logQ(pIPQ o ph) (1)

must be fulfilled.

Let’s find upper bound for coefficients of a characteristic polynomial of a polynomial matrix
from one variable [12].

Let F(z,y) => 1, <Z;";OI gijmj> y*. Numerical modules py,...,p, should be selected so
that py ---p, > max|g;| .

Let ||f|| be a norm of a polynomial f. It is the greatest absolute value for numerical
coefficients of the polynomial f.

Let A= (a;(z)), 1<i<n, 1<j<n,
d = maz{dega;;(z)},
[|A]| = max{||a;;||} =a for 1 <i<n, 1<j<n;
s(A) = maz{s(a;j(x))} =t.

Theorem 1 Let
Fa,y) =y" + filx)y" ™ + -+ fal2)
be the characteristic polynomial of matriz A(x) and m = max{deg fi(z),...,deg fu(z)} + 1.

Then m < nd+1 and for the greatest on the module of numerical coefficient of a polynomial
F(z,y) the inequality is carried out

log, [|F(z,y)|| < n(logyn + log, a + logy t) — log, t. (2)
Proof 1 The polynomial f;(x) is a sum of all the (n—i) x (n—1) diagonal minors of A(x).

Therefore m <nd+1.
In order to find an upper bound for ||F(x,y)|| we use Leverrie-Faddeev’s algorithm [2]:

Bo = E,
1=1,...,n:
{Ai = AB;_y;

For matriz B; we consider two norms ||B;|la and ||B;||n - ||Bil|la is the greatest absolute
value for numerical coefficients of matriz B; which elements are on the main diagonal. || Bl
18 the greatest absolute value for numerical coefficients of matriz B; which elements are not on
the main diagonal.

Fori=1: lAil <a, [Ifill < na, [Billa <, |Billa < (n+ Da.

For i >1: min{s(B;_1),t} =t. Then
A< (/i) 1A
Al < (1 — 1)tall Bisllo + tal Bila
[Bi-lln = |[Ai1l| and |[Bi1|la = [|Aia|| + (| fi-al] -

Then, ||Ai]] < ta(n||Aicall + [|fical]) < tan(i/(i — 1))||Aica]|. Then ||Aj]| < n" ' ta and
|| fil| < n't"™ta® for i>1.
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|| fi]] s greatest when i = n. || fi|| < n™t""ta™. Taking the logarithm of the last inequality by
the basis of 2, we btain the upper bound for numerical coefficients of characteristic polynomials
of polynomial matrices of one variable (2).

Remark 2 If polynomial f of one variable is dense then s(f)=d+1.

Remark 3 The formula (2) is true for a dense polynomial matriz of many variables. The
number of polynomial modules is calculated for each variable x1,...,x;: m; = nd; + 1, where
d; 1s the hight degree of the variable x;, 1 =1,....,t.

4 Parallel algorithms for computing the characteristic
polynomials which are based on the method
of homomorphic images

4.1 The circuit of data communication

The matrix A € Z""[zy,...,2;] and the number boundlev are input data for the parallel
algorithm. The parameter boundlev is number of levels of the algorithm tree. This number
depends on the task (the order and matrix coefficients) and on the computing cluster. The set
of prime numbers is defined in advance and stored on each processor. At first the quantity h
of numerical modules and the quantity of polynomial modules on each variable xq,...,z; is
calculated.

A graph of the algorithm is a binary tree which is presented in a figure 1. Horizontal lines
are divide the graph into levels. At the first level there is only a root, at the second level there
are its two daughter nodes, at the third level there are their daughter nodes etc.

0 1
S I
R

4 & 9 @ @& a4 &

>

45 B0 e

Fig. 1. The graph of the algorithm

In the input root receives the matrix A and the array

intervals = {[1,mq],...,[1,m,[1, k]}.
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In the array intervals first two numbers [1,m;] correspond to polynomial modules zy,x; —
l,zy — 2,..,2y — (my — 1), second two numbers [1,my] correspond to polynomial modules
To, Xy — 1,29 — 2,..,29 — (my — 1) and so on, and the last two numbers [1,h] correspond
to numerical modules [p1,pa, .., px]. As a result of calculations in the root we will receive a
characteristic polynomial of the matrix A.

Daughter nodes at level 2 receive from root a matrix A and the array of modules
intervals = {[1,mq],...,[1,my],[1, 1]} (for the left node) or intervals = {[1,m4],...,[1,m],
[h1 +1,h} (for the right node), where hy = [(1+ h)/2] . Thus each daughter node has half of
all numerical modules. It should return in root the characteristic polynomial of matrix A in
a factor-ring module of products of all modules received from the root. For the left node the
module is p1ps - - - pp, , for the right node — pp, 1 1pp, 12 P -

Each node at level 2 also divide the array of modules half-and-half and sends to their
daughter nodes to level 3. This process proceeds, while there are free processors and on each
processor is available more than one module.

The graph of the algorithm has 2 types of nodes. Nodes of 1st type correspond to numerical
modules and are designated in figures by squares. Nodes of 2nd type correspond to polynomial
modules and are designated in figures by circles.

Node of 1st type.
The node of 1st type with daughter nodes is shown in a figure 2.

J Aintervals  F 4 J Asintervals  Fy » 4

Fig. 2. Node of 1st type
The node of 1st type on an input receives a matrix A and the array intervals =

{[1,m1],...,[1,my],[i1,42]} . Numbers i; and iy set the first and last prime numbers from
the list {p1,...,pn}-
The node of 1st type builds a polynomial F; ;,(x1,...,2;,y) on the remainders received

from daughter nodes. As a result it returns the polynomial F; ;, which is the characteristic
polynomial module {p1,...,pn}.

The node of 1st type sends numerical modules to two daughter nodes. The left node on
an input receives a matrix A and the array intervalsl = {[1,mq],...,[1,my],[i1,is]}, the
right node — the matrix A and the array intervals2 = {[1,mq],...,[1,my], [is + 1,i]}, where
is = (i1 +1i2)/2] . If the daughter node has received only one numerical module it is node of
2nd type, else it is node of 1st type.

The node of 1st type receives two polynomials Fj, ; (z1,...,24,Y) € Zap|x1, ..., 2, y] and
Fi o i(x1, ... 0, y) € Zao[a, ..., 2, y] from daughter nodes, where d1 =p; ---p;, and d2 =
Digsr * - Dip - After reception of these polynomials the father node computes the polynomial

Eliz(xh s thy) S Z’Pil"'PiQ [xh s bey] :

Node of 2nd type.
The node of 2nd type with daughter nodes is shown in a figure 3.

192
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l A,intervals Fj 5 1

Fig. 3. Node of 2nd type
The node of 2nd type on an input receives a matrix A, the array

intervals = {[1,mq],. .., [bs, €s], [Jss1, Jsa1])s - - [0, 7]}

and number s. Numbers i; and iy set the first and last prime numbers from the list
{p1,-..,pn}. s denotes number of an active value, i gives number of a prime number from the
set of modules {pi,...,pn}, the interval [bg,es] gives polynomial modules of the active value
zs. If v <'s then [b,,e,] = [1,m,]. If v > s then [b,,e,] = [ju,Ju], i-e. the interval [b,,e,]
contains one module x, — (5, +1).

The node of 2nd type builds a polynomial Fy . € Z,[x1,...,25y] on the polynomial
remainders received from daughter nodes.

Daughter nodes for a node of 2nd type are nodes of 2nd type. The left node on an input
receives a matrix A, the array intervalsl = {[1,mq], ..., [bs, hs], [Jss1, Js41])s - -, [i,4]} and the
number 71 of an active value, where hy = (bs + €5)/2. If by < hs then the number r1 = s
else r1 = s — 1. The right node — the matrix A, the array intervals2 = {[1,my],..., [hs +
Lesl, [Jst1, Jst1l)s - -5 [0,4]} and the number r2. If hy + 1 < e; then the number 72 = s else
r2=s—1.

The node of 2nd type receives two polynomials

fl S Zpi[xla"'axrhy] and f2 € Zpi[xla'-wxr%y}

from daughter nodes. After reception of these polynomials the father node computes the
polynomial (f;) € Z,,[x1,. ..,z Y].

4.2 Parallel algorithm

Let A€ Z™"xy,...,24]; k be the number of processors;

the function numbO fMod() compute the number of polynomial and numerical modules. The
function numbO f Mod() uses formulas (1), (2);

the function send(a,b, ..., c,i) send adata a,b, ..., ¢ from the current processor to the processor
i

the function recv(a,b,...,c,i) receive a data a,b,...,c on the current processor from the
processor 1 ;

the function go down(intervals,r, boundlev) divide the task into two parts;

the function charPol(A,intervals,r) compute on one processor a polynomial g on one
processor ¢ fulfills if a characteristic polynomial of a matrix A to take product of module
from intervals;

the function recoveryNewton(fi, fo,r1,72) compute by means the Chinese remainder theorem
a polynomial f using remainders f; and fs;
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the number boundlev fix the boundary level for the parallel process. Boundary level depends
on characteristics of a computing cluster. For the given task boundlev = log, k because the
graph of the considered algorithm will be a binary tree.

Let’s describe a method go down .
go_down(intervals, r, boundlev) {
s = | (intervals|r] + intervals[r + 1])/2];
intervalsl = intervals; r1 =r;
intervals2 = intervals; r2 =r;
intervalslr + 1] = s;
intervals2[r] = s;
if (s == intervalsl|r]+1) rl— = 2;
if (s ==rintervals2[r +1] —1) r2— = 2;
boundlev — —;

The parallel algorithm consists of 2log, k levels. Let’s describe operations which are fulfilled
on processors at each level.

1) Processor 0.
boundlev = log, k;
intervals| | = numbO f Mod();
r=k==172(t+1)—-3:2(t+1)—1;
go__down(intervals2,r2, boundlev);
send(A, intervals2,r2, boundlev, k/2);

i) (i=2,...,logy k). Processors jk/271, j=0,...,2"71 —1.
recv(A,intervals,r, boundlev, (j — 1)k/271) for odd j;
go__down(intervals, r, boundlev);
send(A, intervals2,r2, boundlev, (25 + 1)k/2%);

1 +log, k) Processors j, j=0,1,....k—1.
recv(A, intervals, r,boundlev, j — 1) for odd j;
f = charPol(A,intervals,r);
send(f,j — 1) for odd j;
i+logy k) (i=2,...,logy k). Processors j2', j=0,...,k/2' —1.
recv(fz, (2§ — 1)277%);
f = recoveryNewton(fi, fa,71,12);
send(f, (27 +1)2%) for odd j;

Remark 4 If a matriv A € Z™" then intervals = [1,h].

5 Experiments with the parallel algorithm

Experiments that were hold with characteristic polynomials of dense matrices of a numbers and
a polynomials were computed had been made. Elements of matrices got out in a random way.
All numerical coefficients have the equal number of bits.

For estimation of efficiency of parallel algorithms we enter the concept of an efficiency. Let
tr be the computation time of the algorithm for the cluster with %k processors. At transition
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from the cluster with n processors to the cluster with k processors, k > n, the efficiency is
equal 100%, When t¢,/t, = k/n. The efficiency is equal to zero, when t; = t,,. To define an
efficiency of computations at other values t,/t; we define the efficiency as the time function
te .

Definition 1 Efficiency of computations on k processors in comparison with computation on
m processors is the function

to /by — 1
mk = ——— - 100%.
Chmk k/m—1 %

In experiments 1 and 2 we used two parallel algorithms (algorithm N and algorithm D).
Algorithm D computes the characteristic polynomial of a matrix in a finite field with the help
of Danilewsky’s algorithm [7], algorithm N — with the help of an algorithm in the work [6].

Experiment 1 on a supercomputer MVS100k of Joint Supercomputer Center of the RAS
were made [13].

In the experiment we used dense integer matrix. The size of a matrix is 1000 x 1000. The
number of processors is from 16 to 512.

The time and the efficiency of computations are presented in the table 1.

Table 1

The time and the efficiency of computations with the help of algorithms N and D for matrices
of an order 1000 x 1000 and log, a = 7 bits

Quantity of Algorithm N Algorithm D
processors | Time {;, s | Efficiency a5, % | Time t;, s | Efficiency o, %
16 1849 1507

32 921 100 764 97
64 562 76 386 96
100 522 48 364 59
127 500 38 355 46
128 310 70 226 80
175 267 59 220 58
255 239 45 167 53
256 166 67 127 72
350 162 49 122 54
400 113 64 89 66
512 113 49 83 55

Apparently from table 1 if quantity of processors are divisible by 2P computation time
extremely decreases where p — natural number.

Experiment 2 was hold with a cluster from 16 processors of Intel Xeon 3 GHz, 1 Gb,
installed in a laboratory of algebraic calculations of the Tambov State University named after
G.R. Derzhavin. In the experiment we used dense integer matrix. The size of a matrix is
400 x 400 and if a is a largest absolute value for coefficients of matrix then log, a = 20 bits.
The number of processors is from 2 to 16. The time and the efficiency of computations are
presented in the table 2.
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Table 2

The time and the efficiency of computation with the help of algorithms N and D for matrices
of an order 400 x 400 and log, a = 20 bits

Quantity of Algorithm N Algorithm D
processors | Time t;, s | Efficiency asx, % | Time t;, s | Efficiency asy, %
2 2740 1648

4 1369 100 816 102
6 1268 58 833 48
8 691 98 416 98
10 660 78 429 71
12 644 65 426 57
14 660 52 427 47
16 359 94 222 91

Experiments have shown that efficiency (Table 2) is in limits from 50 % to 98 %. The
best efficiency is reached, when the number of processors is a degree of number 2.

In experiments 3 and 4 with polynomial matrices we used the parallel algorithm D
which computes the characteristic polynomial in a finite field with the help of Danilewsky’s
algorithm [7]. These experiments were hold with a supercomputer MVS100k of Joint Super-
Computer Center of the RAS.

In experiment 3 we used dense polynomial matrix of two variables: s = [2,2], a = 10 bits,
n = 50. In experiment 4 we used dense polynomial matrix of two variables: s = [1], a = 10
bits, n = 400.

The times and the efficiency of computations are presented in the table 3.

Table 3

The time and the efficiency of computations with the help of algorithms N and D for
polynomial matrices of an order n x n, b= 10 bits is largest absolute value for numerical

coefficients of matrix elements, myq,...,m; is a hight degrees of variables x1,..., 2,
n =>50, m; =2, my =2 n =400, m; =1

Quantity of | Time, s | Efficiency, % Quantity of | Time, s | Efficiency, %
processors tr N processors iy o
1 16558 16 14514

2 8676 91 32 8178 7
4 4548 88 64 5101 61
8 2651 75 128 2882 57
16 1626 61 256 2046 40
32 1146 43 512 1576 26
64 748 34 1024 1445 14
128 513 25 2048 1354 7
256 510 12 4096 1316 3

Experiments show that while increase in the number of processors increases the efficiency
of calculations decreases. Then further multisequencing does not become favorable to some
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number of processors. Transferred blocks become so small that transfer time comes close to
computation time at boundary level. For example, for experiment 3 it is ineffective to use the
considered parallel algorithm for computing the characteristic polynomials with usage of 256
and more processors as computation time does not decrease. The best computation time for
polynomial matrices (the order 50 x 50, b = 10 bits is largest absolute value for numerical
coefficients of matrix elements, [2,2] of highest degrees of variables x1, x5 ) on cluster MVS100ii
will be about 10 minutes, and for matrices (the order 400 x 400, b = 10, [1] of the highest
degrees of variables 1) will be about 25 minutes (Table 3).

6 Conclusion

Parallel implementation of algorithms allows to compute characteristic polynomials for matrices
of a big size. Therefore, it is important to construct effective parallel algorithms. Modular
arithmetics allows to make it as calculations on each module independently upon each other.
If algorithms based on the method of homomorphic images over a finite field use the best
according to the number of operations algorithms for calculation of characteristic polynomials
it is possible to obtain effective parallel algorithms.

There were developed the parallel programs which realize two algorithms (algorithm N
and algorithm D) of computation of characteristic polynomials for numerical matrices and
one algorithm of computation of characteristic polynomials for polynomial matrices of many
variables . Algorithm N in a finite field uses the algorithm from the work [13] which has the best
estimation of ring operations (~ 7/3n?). Algorithm D uses Danilewsky’s algorithm |7] which
has ~ 2n3 operations in a finite field. Graphs of algorithms N and D are binary trees. Therefore
it is effective to use the parallel computer which has 2P processors. Really, experiments showed
that the efficiency of computations is the greatest at transition from 27 to 2P™! processors,
it is 75% — 94% . Experiments showed that computation time of characteristic polynomials of
matrices by the algorithm D is 20-60% less, than on algorithm N.

Taking into account the obtained results of experiments in the ring of integers for calculation
of characteristic polynomials of matrices in the ring of polynomials the algorithm which uses
Danilewsky’s algorithm in a finite field has been realized. Experiments show that at increase
of the number of processors the efficiency of calculations decreases. If the number of processors
increases, the number of transfers also increases, and the size of calculations at boundary level
decreases. For some number of processors the sending time will be equal to computation time at
boundary level, further parallelization is not effective. For characteristic polynomials computing
for matrices of the size 50 x 50 over polynomials of two variables whose highest degrees equal
2 and the greatest absolute value of numerical coefficients has 10 bits, it is not effective to
use the considered parallel algorithm on 128 and more processors. For matrices of the size
of 400 x 400 over linear polynomials of one variable and 10 bits greatest absolute value of
numerical coefficients — on 512 and more processors.

The considered algorithms for computing of characteristic polynomials for matrices over
a ring of integers and over a ring of polynomials showed good scalability. Tt is supposed to
realize algorithms over a finite field using Keller-Gehrig’s algorithm [8] and Pernet-Storjohann
algorithm (2007) [9], to compare them with algorithms already realized and to reveal the most
effective algorithms.
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ITAPAJIJIEJIBHBIN AJITOPUTM BBIYNCJIEHUA
XAPAKTEPUCTUYECKUX ITOJIMHOMOB MATPUI], OCHOBAHHEI HA
METOAE TOMOMOP®HBIX OBPA30B

(© Oxcana HukosaeBHa IlepecsiaBueBa
TamboBcKumit rocynapcrpernblii yuusepcuter uM. [P, epxkapuna, nrepunanuonaibnas, 33,
Tam6oB, 392000, Poccus, mporpaMMucT JabopaTopuu aaredpandecKux BbIYHCICHUI,
e-mail: Pereclavtseva@rambler.ru

Kmouesnie cao6a: BoIUUCTEHNE XapPAKTEPUCTHIECKAX TIOJNHOMOB MATPUIL; TTAPAJLICThH-
HBIIl aJICOPUTM; METOJT TOMOMOPMHBIX 00pPa30B; KIACTEP.

[Mpemrararorcs mapajiesbHble aJrOPUTMBI JJIsI BEIUUCIEHUS XaPAKTEPUCTHIECKUX 10~
JIMTHOMOB TI€/IOYMCJIEHHBIX U MOJIMHOMUAJIBHBIX MAaTpuIl. JlaHHbIe aJrOPUTMBI OCHOBAHBI
Ha MEeTOZe TOMOMOP(MHBIX 00PA30B, MTPUMEHEHHOM KaK K KOJbBITY IEIbIX UHCe, TaK U
K KOJIBIY TIOJHHOMOB MHOTHX TIEpEeMEHHBIXK. J[JisT mpuMeHeHusT MeToa TOMOMOP(HBIX
00Pa30B HAXOAUTCS BEPXHAS OIEHKA TUCIOBBIX KOI(MD@MUITMEHTOB XapaKTePUCTHIECKOTO
nomHOMa. O6CYXKIAaI0TCd PE3YIbTATHl SKCIEPUMEHTOB C MTapaJIJIETbHBIMHI aJTOPUTMA-
mu, nposejgennbix Ha Kiaacrepe MBC-100K 8 MCII PAH.
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Key words: polynomials on the external data carrier; polynomial arithmetic; the parallel
algorithm of multiplication.

This paper presents the description of structure of polynomials on the external
data carrier. The algorithms for addition and parallel multiplication of polynomials
are scrutinized. The results of experiments conducted with parallel multiplication of
polynomials on cluster are given.

1 Introduction

Polynomials are the main objects in symbolic computation [1]. The effectiveness of computer
algebra system depends on the effectiveness of polynomial procedures.

Symbolic computations are characterized as problems of high computational complexity.
Therefore, it is necessary to develop parallel algorithms and conducting calculations on
multiprocessor computer systems.

In the articles [3], [4] there is information about parallel polynomial algorithms. Traditional
systems of computer algebra, such as Mathematica, can operate on polynomials, that do go
into RAM. However, these systems are unsuitable for operation with large polynomials, which
need more memory and cannot be written into RAM. Therefore, providing operating on such
polynomials is one of the primary tasks of parallel computer algebra.

One of such systems that can operate on so large mathematical expressions is «<FORM».
It is a system for symbolic manipulation of algebraic expressions specialized in handling with
very large expressions of millions of terms in an efficient and reliable way [5].

In the article [6] the representation of the large polynomials is discussed, the algorithms
realising an implementation of main arithmetical operations are considered and the results of
the experiments are also presented there.

This article describes the structure of the polynomial, which is stored on the external data
carrier. Algorithms of addition and parallel multiplication of such polynomials are considered
there.

You may also get acquainted with the results of experiments which were carried out on
operation of parallel multiplication of polynomials on cluster of JSC RAS. It is presented in
graphics.
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2 The structure of polynomials on the external data carrier

We used two one-dimensional arrays to store one polynomial. The first array stores only the
nonzero coefficients of a polynomial and the second array stores the degrees of each variables. If
there are «var» variables in a polynomial, the second array contains «var» times more elements
than the first. Monomials in the polynomial are stored in reverse lexicographical order. This
order is accepted, that arithmetic algorithms with polynomials worked faster. You can learn
about other structures of polynomials in article [7].

This polynomial will be stored on external data carrier in two files. Monomials of a
polynomial in the form of arrays bytes will be saved in one file. The second file will contain
the type of coefficient, i.e. the set of whole or rational numbers which polynomial coefficients
are taken from. Then, the number of variables of the polynomial (vars), the total number of
nonzero monomials in the polynomial and an array of integers will be written in the second file.
The array of integers contains the information about number of bytes, which each monomial
of the polynomial occupies on a hard disk. We will call such polynomial the file polynomial,
which are stored in external memory.

We should be able to operate with file polynomials and to send them between cores. For this
purpose, we will operate small fragments of file polynomials, which can be located in RAM.

3 Addition of file polynomials

Operation of addition of file polynomials is implemented in the form of consecutive algorithm.
This algorithm consists of three main parts:

1. We compare variables in file polynomials. If one of the file polynomials has more the
number of variables, the monomials, that contain these older variables will be recorded
in the resulting file. Otherwise, we go to the step 2.

2. We compare exponents of variables in each monomial. If exponents of variables in the
monomials are equal, the coefficients are added and a new monomial with the same degrees
is recorded in the file. If the sum of coefficients is equal to zero, then the monomial at
this degree is not written into file. If the exponents of variables in one of the monomials
will be greater, then this monomial can be written in the file, and the smallest one is
compared with the following one. Transition to the next step will be done when the file
polynomials will be read to the end.

3. We read and write into the resulting file of the remaining monomials of one of polynomials.

Let

p1 = 92%y? + 4oy — 8xy + x — 6,

py = —82%y%23 — 2%y?2? — 42’y — 52 + 3xy.
We consider example of addition p(1) and p2).

Step 1. We write into the file: —82(2)y(2)2(3) — 2(2)y(2)2(2).
Step 2. We write into the file: 92(2)y(2) — 52(3) — 5xy.
Step 3. We write into the file: = — 6.
As a result, we obtain the sum of two polynomials in form of a sorted file polynomial.
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If we view p(1) + p2) then the following will be written in the file:

p = —8z%%2% — 2%%2% + 92%y? — 5a® — bay + = — 6.

4 The parallel algorithm of multiplication of file polynomials

The procedure of multiplication of file polynomials is recursive. Dichotomous division of
polynomials on the part present a basis of the recursive algorithm.

The condition is a way of the exit out of the recursion, if it is satisfied, then the multiplication
of individual parts of polynomials can be made in memory of the given size.

The value of free RAM is set by a variable freeMemory. Procedure getMemForMul
estimates size of the memory that may be required to multiplication of two polynomials or
their parts. The result returned by the procedure getMemForMul is compared to the variable
freeMemory .

The binary tree is the graph of the recursive algorithm. The multiplication of parts of
polynomials is performed on its leaves.

The interval with numbers of free cores is set in root node. The parallel algorithm of splitting
of polynomials by parts is accompanied by splitting the interval with numbers of cores. If set
of free cores is empty and multiplication of parts of polynomials cannot be done in memory,
the consecutive recursive algorithm on one core will be caused.

We consider a parallel algorithm for multiplication of file polynomials A and B. Algorithm’s
graph is presented at Figure 1.

A B = a]_B + a':B

a, b, /\
] | a;B 01]/\[”"3

IRIPAWANYAIAY

Fig. 1. The graph of parallel algorithm of multiplication of polynomials A and B and
distribution of four cores to nodes of the tree

Let A = (a1 + ag) and B = (by + by) be two file polynomial that we want to multiply.
The product can be found as the sum of four items: aq % by + ay * by + as * by + ao * by . The
calculation of each of the four items can be executed on a separate core.

We choose greater polynomial and splitted it by two parts. Parts should occupy in the
memory an equal amount of bytes. Let the polynomial A > B, ie A occupies more memory
than B. On the first step we divide a polynomial A into two parts a; and as,ie A= a;+a-.
The interval with numbers of cores [0, 3] will be divided into two intervals [0, 1] and [2,3]. We
received two nodes a;* B and ao* B . These operations cannot be executed in RAM, therefore
division of polynomials into parts will be continued.
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We choose greater of polynomials a; and as. Let B > a; and B > ay. Then we divide B
into parts by, by and calculate products a; * by, ay *x by, as * by, as * by on each core.

Let we have reached leaf nodes if multiplication is possible to execute in RAM on cores 0,
1, 2, 3, accordingly.

During the sending the calculated fragments back to the root, their addition will be done:
a1 *xby + a1 xby =ayx B and as * by + as x by = as x B . The result of multiplication will be the
sum aj * B+ asx B = Ax B, calculated at the root.

We consider the program code of procedures for parallel multiplication of the file polynomials,
implemented on language Java.

We introduce the following designation:

Polynom — is a type of polynomial, which is stored in memory.

F Polynom — is a type of file polynomial.

Subset — is a set of numbers of available cores.

BasePolynomDir — is a class that is used to create the directory where the file will be
written polynomials.

By default it is a directory ”/tmp/fpolynoms/” in operating systems Linux and "C :
\temp\ fpolynoms” in Windows.

In algorithm of parallel multiplication of file polynomials the procedures are used:

1) Polynom mulS(Polynom pol2) . The procedure multiply polynomials in RAM.

2) Polynom toPolynom(long skipBytes, long bytes). The procedure reads a part of the
file polynomial and writes it into RAM. Parametres: skipBytes — quantity of bytes which will
be skipped, bytes - bytes quantity which will be read. Result is a polynomial in RAM.

3) F'Polynom toF Polynom(F'ile filename, Element itsCoef fOne). The procedure reads
a polynomial from memory and writes down on a hard disk, at the specified path filename.
itsCoeffOne - is a unit in the field of the coefficients of the polynomials. The result is a
polynomial, written in external memory.

4) long get MemFor Mul(F Polynom fpoll, FPolynom fpol2, long s1, long nl, long s2,
long n2). The procedure returns the number of bytes which can be received as a result of
multiplication of parts of polynomials fpoll and fpol2. s1, s2 is a bytes which will be
skipped in the polynomials fpoll and fpol2. nl, n2 is a bytes which will be read in the
polynomials fpoll and fpol2.

5)long getByteLength(). The procedure returns the size of memory in bytes that the file
polynomial occupied.

6) Subset[] divideOnParts(int n). The procedure splits an interval into n parts and returns
an array of intervals.

7) long middle Polynom(long skipBytes, long middle) . The procedure returns the number
of bytes approximately equal to half of a memory size which occupies a part of a file polynomial.
skipBytes is the bytes needs to be skiped a file polynomial, maddle - is the middle of a part
of the file polynomial.

8) Ssend(Object obj, int proc, int tag). The procedure sends an object obj, to the core
with number of proc, and of tag is the tag.

9) Recv(int objType, intproc, int tag). The procedure receives a object obj , from the core
with number of proc, and of tag is the tag.

10) SendF Polynom(F Polynom pol, long skipBytes, long numbytes, intproc).

The procedure sends numbytes bytes of a file polynomial pol to the core with number proc.
skipBytes of bytes will be skiped from the file beginning.
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11) RecvF Polynom(F'ile dir, int proc) - The procedure receives a file polynomial from the
core with number proc and writes down his on a disk in the directory dir.

12) add(String dirl, String dir2, File fdir). The procedure adds file polynomials which
are in the directories dirl, dir2 and writes the result in fdir.

The program code of procedure of multiplication of file polynomials can be seen in Fig. 2.

public static FPolynom multiply (FPolynom fpoll,
FPolynom fpol2, File fres) throws Exception{
int myrank = MPL.COMM _ WORLD.Rank();
if (myrank == 0){
int size — MPLCOMM_WORLD.Size();
Subset procs = new Subset(new int[|{0,size-1});
multiplyRec(fpoll, fpol2, 0, fpoll.getByteLength(),
0, fpol2.getByteLength(), fres, procs, 0)}
else{
Status st = MPL.LCOMM _WORLD.Probe(MPLLANY SOURCE, MPLLANY TAG);
if (st.tag==tag_true){
int parent = (Integer)LLP.Recv(LLP.INT TYPE, MPLLANY SOURCE, tag true);
BasePolynomDir dir = new BasePolynomDir();
File f1 = new File(dir.createPolynomDir("proc"+myrank), "p1");
File 2 = new File(dir.createPolynomDir("proc"+myrank), "p2");
File £3 = new File(dir.createPolynomDir("proc"+myrank), "p3");
int[] arr = (int[])LLP.Recv(LLPINT ARRAY TYPE,
parent, tag _proc);
Subset process = new Subset(arr
LLP.RecvFPolynom(f1, parent);
LLP.RecvFPolynom(f2, parent);
FPolynom pl = new FPolynom(fl);
FPolynom p2 = new FPolynom(f2);
multiplyRec(pl, p2, 0, pl.getByteLength(),
0, p2.getByteLength(), f3, process, myrank);
LLP.SendFPolynom(new FPolynom(f3), 0,
f3.length(), parent); }}
return new FPolynom(fres);}
Fig. 2. The code of procedure of multiplication of file polynomials

);
)

Procedure multiply receives on an input two file polynoms fpoll, fpol2 and a directory
fres in which the result of multiplication will be written down.

The procedure Size() determines the number of core and puts his in the variable myrank.

On the core with number zero ( myrank =0), the variable size accepts value of total number
of cores, numbers of cores will be contain in an interval procs from 0 to size — 1.

On zero core recursive procedure of multiplication multiply parts of polynoms fpoll, fpol2
is started. The remaining cores, with numbers not equal to zero, waiting for a message with
tag equal to the tag true.

When a message with tag true will come, then the number of core from which it came,
the interval with numbers of available cores, and two polynomial will be received.
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private static FPolynom multiplyRec( FPolynom fpoll, FPolynom fpol2,
long skip1, long lengthl, long skip2, long length2,
File fres, Subset proc, int myrank) throws Exception{
File bufres = fres;
FPolynom result = new FPolynom(fres);
String namedirA, namedirB;
int 11 = end1-st1, 12 = end2-st2;
if (getMemForMul(fpoll, fpol2, skipl, lengthl, skip2, length2)<freeMemory){
fpoll.toPolynom(skipl, lengthl).mulS(
fpol2.toPolynom(skip2, length2)).toFPolynom(fres, itsCoeffOne);
if (proc.cardinalNumber() >1)

}

for(int i=1; i<proc.cardinalNumber(); i++)
LLP.Isend(new Integer(0), proc.toArray()[i],
tag false);}

else{ long s1=skipl, s2=skip2, el=lengthl, e2=length2,
s11=0, s22=0, ell=el, e22=e2;
Subset|| process;
if (proc.cardinalNumber() >1){ process — new Subset|2];

process = proc.divideOnParts(2);

LLP.Ssend(new Integer(myrank), process[1].toArray()[0], tag_true);

LLP.Ssend(process|1|.toArray(), process|1].toArray()[0], tag proc);

if (length1>=length2){ el = fpoll.middlePolynom(skipl, el/2);
LLP.SendFPolynom(fpoll, s1, el, process|1].toArray()[0]);
LLP.SendFPolynom(fpol2, s2, e2, process|1]|.toArray()[0]);
s11 = el+skipl; ell = lengthl-el; s22=skip2;

} else{ LLP.SendFPolynom(fpoll, s1, el, process|1|.toArray()|0]);
e2 = fpol2.middlePolynom(skip2, e2/2);
LLP.SendFPolynom(fpol2, s2, e2, process|1].toArray()[0]);
s22 = e2+skip2; e22 = length2-e2; s11=skipl;}}

else{ process = new Subset[1];
process|0] = proc;
if (length1>=length2){ el = fpoll.middlePolynom(skipl, el/2);

sll1=el+skipl; ell1=lengthl-el; s22=skipl;
telse{ e2 = fpol2.middlePolynom(skip2, 2/2);
s22=e2+skip2; e22=length2-e2; s11=skipl;}}
fileA = fres.getAbsolutePath()+"a";
bufres = new File(fileA);
multiplyRec(fpoll, fpol2, s11, ell, s22, €22, bufres, process|0|, myrank);
fileB = fres.get AbsolutePath()+"b";
bufres = new File(fileB);
if (proc.cardinalNumber() >1){ LLP.RecvFPolynom(bufres, process|[1].toArray()[0]);
else{ multiplyRec(fpoll, fpol2, sl, el, s2, e2, bufres, process|0], myrank); }
FPolynom.add(fileA, fileB, fres);

return result;

Fig. 3. The code the recursive procedure of the multiplication of parts of file polynomials
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Recursive procedure of multiplication of the received polynomials will be caused. The result
of multiplication is sent back, to the core from which polynomials have been received. If the
message with tag tag true is not received by the core then he is remains not used.

4.1 The recursive procedure of multiplication of parts of file polynomials

The recursive procedure of multiplication will have following arguments:

1) two file polynomials fpoll and fpol2;

2) number of bytes which is necessary to skip in the file polynomial fpoll;

3) number of bytes which is necessary to read from the file polynomial fpoll;

4) number of bytes which is necessary to skip in the file polynomial fpol2;

5) number of bytes which is necessary to read from the file polynomial fpol2;

6) the directory fres in which the result of multiplication will be written down;

7) the interval of procs which contains numbers of cores;

8) the number of node on which procedure is caused.

The program code the recursive procedure of multiplication of file polynomials can be seen
in Figure 3.

After initialization of some variables, there is a condition check. The result of multiplication
of polynomials or their parts must will be located in RAM, ie the volume freeMemory . If this
condition is satisfied, then they are multiplied in memory, the result is returned. All untapped
cores sent a message with tag equal tag false, denoting the end of the operation.

If function returns value exceeding freeMemory, then greater of the polynomials will be
splitted on two parts. One of pairs of parts from the file polynomials remains on one node,
and the second pair is sent to another core. Division of polynomials into parts will be will
proceed until product of these parts will be located in RAM in volume freeMemory. After
parts of polynomials have been multiplied, product will be sent the core from which they have
been received. The core will calculate the sum of the received polynomials. On zero core last
operation of addition of polynomials will be made.

5 Experiments

The program complex has been developed. The experiments were conducted on the cluster of
MVS —100K in the MSC Russian Academy of Sciences. At experiments we used polynomials
of two variables, received in a random way, with coefficients not greater than 10® by absolute
value and quantity of monomials 25 * 10* . For parallel algorithm it is accepted that free RAM,
ie freeMemory it is equal 32 Mb.

Let:

Ty — The time of calculations on n cores;

T, — The time of calculations on k cores;

k>n.

The speedup of calculations at transition from n cores to k cores will be assumed by the
formula a(7y) = (1 — Ty/Tk)/(1 — k/n) % 100. The speedup is measured in percents. In this
experiment n = 8. The results of experiments are presented in Tables 1 and 2.
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Table 1

The table of values of run—time of operation of multiplication of polynomials on n cores and
speedups of calculations on n cores in comparison with calculations on one core. One core is
used on each node

number of cores | time, sec | efficiency, %
8 2644 -
16 1719 53,8
32 1176 41,6
64 785 33,8
128 57T 23,9

Table 2

The table of values of run—time of operation of multiplication of polynomials on n cores and
speedups of calculations on n cores in comparison with calculations on one core. Eight core is
used on each node

number of cores | time, sec | efficiency, %
8 3713 -
16 2578 44,0
32 1688 40,0
64 1009 38,3
128 716 27,9
4000 -
4
3500 -
3000 -
2500 -.\
0
3 2000 - 4 ] core on the
a node
'E 1500 4 -+-3 cores on the
node
1000 H
500 +
O T T

1
8 16 32 B4 128
number of cores

Fig. 4. The graph of dependence of run—time of operation of multiplication of polynomials
from number of cores
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Fig. 5. Efficiency of run-time of operation of multiplication on k—core cluster, in comparison
with calculations on n—core cluster

6 Conclusions

We can see on the graph in Figure 4 that with an increase of number of cores, run time of
operation of multiplication decreases.

There are 8 cores on each node on the cluster MBC-100K. If we use single core on 8 nodes,
operation will be executed faster than when using 8 cores on one node. Because 8 cores on one
node use one hard disk. When we set the task for 8 nodes, and use only 1 core on the node,
instead of 8 possible, the most of cores in this case will not work. Therefore, use of all cores on
the node is more profitable and is more economical.

On the graph of Figure 5 we can see that the speedup time of the operation of multiplication
decreases with increasing number of cores. If we continue to increase quantity of cores, speedup
becomes close to zero. In the above example, we not used more than 128 cores when speedup
of calculations in comparison with 8 cores will be less than 30 %.

The realised parallel algorithm of multiplication of file polynomials has shown the efficiency
and can be applied dealing with problems which use multiplication of polynomials of the big
sizes.
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B crarbe npuBoguTCs ONMUCAHUE CTPOEHUS IIOJIMHOMA, KOTOPBLI XPAHUTCS HA BHEITHEM
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A parallel computing algorithm is researched in the article. It allows finding a solution
for the direct and inverse problem of the temperature field structure in semi-infinite
piece-homogeneous rod. The Fourier transform method with dividing points provides
the parallel computing for the solution of the specified problems.

1 Introduction

Uflyand Y.S. proposed the Fourier transforms with discontinuous coefficients in the "70s of 20th
century [1]. This theory was further developed in M.P. Lenyuk’s works [2]. Multidimensional
case is considered by V.A.Il'in see, [3|. Vector case is researched in O.E Yaremko’s works [4].
The Fourier transforms with discontinuous coefficients are applied for the direct and inverse
problems of mathematical physics.

The integral Fourier transforms are made in the following way. Let u (z,\) and u* (£, \) be
respective solutions for the Sturm-Liouville problem and dual problem for the Fourier’s operator

> d? d?
j=1
on the real semi-axis with dividing points 0 < lp < 1 < ... < I, < l,41 = o0, where A,,—

square matrices of the size p X p, 6 (z) — unit step function.
Expansion theorem into own functions of the Fourier’s operator is proved, therein[3].

Theorem 1 (Ezpansion theorem).Let’s suppose vector- function f(x) as defined, continuous,
absolutely integrated on the set I and has the limited variation on the set I . Decomposition
formula takes the form

F)=2 [ e (/wu*@,w(s)ds) el

lo
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where _
[: = {l’ : Uj:l (ljfl,l]’)} .

The direct F,, and inverse F, ! integral Fourier transforms with n dividing points are defined
in the expansion theorem

Fur [f] (V) = / W (€N FE)dE= TN, 1)
Ef] (@ E%/)\Ul’)\ (A)dX = f(x). (2)

In the specific case the direct F,, and inverse F, transforms turn into the cos— and sin—
transforms.
Modern mathematical models often lead to necessity of solution of differential equation systems
for partial derivatives. Problems with piecewise constant coefficients arise at modeling processes
of the multilayered environments. The vector integral Fourier transforms on the real semi-axis
with dividing points are necessary mathematical methods for solution of such systems.
Some authors applied the Laplace transform [7]| for solution of the specified problems. Solution
of the problem is expressed by means of line integral even in a scalar case. The calculation
of line integral is quite a difficult task and it requires appropriate skills.Actually the arising
difficulties are insuperable in the vector case.
FFT method (Fast Fourier Transform) is realized in [8] for the Poisson equation in a circle. Fast
algorithms of solution of direct and inverse problems for the vector heat conductivity equation
with piecewise constant coefficients are constructed in the sec.2 and in the sec.3 respectively.
The purpose of this article is to develop a method fast singular vector Fourier transform. The
offered method

-is an alternative to a classical net method;

-gives the standard engineering of solution of direct and inverse problems of mathematical
physics with piecewise constant coefficients;

-admits the parallel computing processes.
Vector integral transforms of cos— and sin— types are constructed in sec.l.
Parallel computing processes of solution in direct problem of vector heat conductivity equation
is shown in the sec.2 . Method of singular vector integral Fourier transforms is applied for
solution of the inverse vector heat conductivity problem. It is well known that this problem is
ill-posed one. Inverse heat conduction problem has been researched by many authors, see [9].
Iterative algorithm is proposed for solving of inverse problem in the sec.3.

2 Sturm-Liouville Problem

The Sturm-Liouville problem is to define the nontrivial solution of the mixed boundary value
problem for the ordinary differential equation

& -
(d2+%0umzaQiIAJV,mZLn+thH (3)
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by boundary conditions

d
(b + )| =00l Lo < )
T xr=lg
and contact conditions in dividing points
d d —
(afla + fl) up = <a§2% + 5f2> Upr1, x =1lg, k=1,n, j=1,2. (5)

Here -u,, vector- function of size p x 1, A,,, afi— square matrices of the size p X p.
Let us set

Ont1 () = exp (¢uy121) 3 Yny1 (T) = exp (—@n4127) 5 Qi1 = A;}A)\-

Let us define the other n-function pairs (¢, %), k= 1,n as sequentially inductive relations

d d .
[0451% +5f1} (r, Vr) = [Oé?é% + 5?2} (Prr1,Yr1), k=1n, j=12
Also let us designate
0 0
(‘10(/\) = [a(l)lﬁ + 5?1} Y1 (:B7 /\) ) 7,1/1 ()‘) = [O‘(l]lﬁ + 5?1} (G0 ($, )‘) )
r=lo z=lo

Ok Uk
o= (7).
oh W
Condition of unrestricted solvability of the problem (3) - (5) we will consider fulfilled further

det gplo()\) # 0, € (0,00).

For the Sturm-Liouville problem (3) - (5) by means of unit step function 6 (x) we construct
an appropriate spectral function u (z, A):

w(z,\) = Z 0(x—1;1) 0(1; — ) uy (2,0) +0 (2 —1,) Uy (2,)) (6)

where

0 0

u; (SE, )\) =¥ (:Ca )‘) 90171 _wj (l’, )‘) ¢f1 .
The spectral function of the dual to the Sturm-Liouville problem (3) - (5) takes the following
form

u” (ZE,ﬂ) = 29(37 - lj—l) 9(1] - 93) u; (1'75) + Q(ZE - ln) u;-i-l (Iaﬁ) ) (7)

where

@8 = (30, b@) o' ws) () 4 j-TarL

1

The direct F,, and inverse F,.' Fourier transforms on the real semi-axis [3] with n dividing
points take the form (1), (2), where

fla)y =00k —2)0(z—l) fi(2) +0 (1) fora (2).
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3  Vector Heat Conductivity Equation

The structure of a non-stationary temperature field of semi-infinite non-homogeneous rod takes
the form 3]

v; (t,x) = / exp (=N*t)u; (t,z) F(A\)dA, t>0, L1 <z<l (8)
0

lj,1

FO =3 BWEN = [ ujen) 0

where f; (£)-is an initial distribution of temperature in j-a layer , v; (¢, z)-is a temperature
distribution in i-a layer at the moment ¢.

First step. The processor P; calculates the j component of the eigenfunction w; (A, z) and
the spectral function Fj ()).

Second step. Processors Pi,..., P, transmit data to the processor F;. Processor P;
calculates the values of temperature in the i-layer according to the formula (8) .

4 Inverse Vector Heat Conductivity Equation

Let’s find the solution of the inverse heat conduction problem.The problem is to define
initial distribution of the temperature field f (z) in the equation (8) according to the known
distribution v (7, x) in a moment of time 7. Applying Fourier transform (1) - (2) in the equation
(8), we obtain:

KN fN) =00,

where K (A\) = exp (—\?7).
We introduce the grid of nodes: A\, = —A + %, k=0,1,..., 2N, were A —is quite a
large number. Let’s consider the iterative process [6]:

For1 ) = f (M) = 7 (K () fa (M) =0 (Mi)) (9)
k=0,1,..., 2N, n=0,1,..., where 7, meets the following conditions:

1
g =N=nK M) <5 k=0 1., 2N

It is always possible with this kind of function. We can show that for each

k (k=0,1,..., 2N) the speed converge iterations are Aq} .

Then we find the function f(z) on the quadrature formula using the inverse Fourier
transform.

First step. The processor P; calculates the j component of the spectral function 7; (\).

Second step. Processors Pj,..., P, transmit function values 7;(\) to the processor
Py . Processor Py performs an iterative process according to the formula (9) .
Third step. Processors Py, Py, ..., P, transmit data to the processor P;. Processor P,

calculates the values of initial distribution of temperature in the 7-layer according to the formula

2).
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5 Conclusion

In the present article The Fourier transform method with dividing points provides the parallel
computing for the solution of the direct and inverse problem of the temperature field structure
in semi-infinite piece-homogeneous bar Bessel and Weber transforms solve the problems of
mathematical physics with spherical symmetry. In the future we will develop the parallel
computing algorithms Bessel and Weber transforms.
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Wcenenopan mapaJiiesibHbIl BRIMUCIUTEIBHBIN aJTOPUTM LIS PEIeHus MpsiMoit u 06-
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