
Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Preface
The interest in parallel computer algebra and parallel symbolic computations appeared more

than 20 years ago. Earlier meetings that concerned the Parallel Symbolic Computation were
held in Linz, Austria, (PASCO'94) and in Maui, U.S.A., (PASCO'97).

After 10 years gap the interest in this �eld has started to grow for the last 5 years.
There were two PASCO conferences at London, Canada (PASCO'07) and in Grenoble, France
(PASCO'10) and four international conferences "Applications of Computer Algebra" where
special sessions of parallel computations were organized. There were special sessions "Parallel
Computer Algebra" at ACA'2006 in Varna, Bulgaria and at ACA'2008 in Linz, Austria,
organized by Gennadi Malaschonok, Tambov University, Russia, the session "High-Performance
Computer Algebra" organized by Jeremy Johnson, Drexel University, USA, and Marc Moreno
Maza, University of Western Ontario, Canada, at ACA'2009 in Western Ontario, Canada and
the session "Parallel Computations" organized by Gennadi Malaschonok and Stephen Watt,
Western Ontario, Canada, at ACA'2010 in Vlora, Albania.

Therefore, the organization of a new international conference "Parallel Computer Algebra"
(ParCA-2010) in Tambov University (Russia) is the natural consequence of the growing interest
shown by the mathematicians in this �eld of computer science and particular in the growing
activity of Russian researchers in this direction.

This volume of the Tambov University Report contains revised version of the papers
submitted to the international conference "Parallel Computer Algebra" (ParCA'2010) by the
participants and accepted by the program committee after a through reviewing process. The
general areas of interest of ParCA 2010 conference include all aspects of parallel algorithms
for computer algebra, software techniques for parallel computer algebra systems, applications
of parallel computer algebra in all �elds and using computer algebra in designing parallel
algorithms or software in other areas.

The topics include:
� parallel polynomial computation,
� parallel algorithms for symbolic linear algebra, matrix operations and linear systems,
� parallel methods for solving systems of di�erential equations,
� parallel methods for Groebner basis computation,
� parallel algorithms in combinatorics and cryptography,
� parallel algorithms in computational algebraic geometry,
� complexity of parallel computer algebra algorithms,
� reinvention and adaptation of existing symbolic algorithms to a parallel setting.

A total of 18 contributions were received in response to the call for papers. These were
reviewed by members of the Program Committee or by external reviewers selected by the
committee. Each paper received between two and four reviews, with most receiving three.
Finally, 11 papers (about 60 inclusion in these proceedings). While the majority of the authors
are from the Russian Federation, it is a pleasure to see a true international �avor at this meeting,
with authors and PC members representing eleven countries on three continents.

The "Parallel Computer Algebra" conference was supported �nancially by the Russian
Foundation of Basic Research grant 10-01-06045g, by the Administration of Tambov Region and
by the Tambov State University. We are grateful for the support. Our special gratitude to the
members of ParCA Program Committee and to the members of the ParCA Local Organizing
Committee in Tambov.

June 2010 Gennadi Malaschonok

1309

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Organization

PARCA 2010 was organized by the Institute of Mathematics, Physics and Informatics
of Tambov State University, Tambov, Russia.

Organizing Committee:

General Chair and PC Co-Chair: Gennadi Malaschonok, Tambov State U., Russia
PC Co-Chair: Gene Cooperman, Northeastern U., Boston, USA
PC Co-Chair: Stephen M. Watt, U. Western Ontario, Canada

Local Arrangements Chair: Natalia Malaschonok, Tambov State U., Russia

Committee:

Yuri Blinkov, Saratov State U., Russia,
Gene Cooperman, Northeastern U., Boston, USA,

James H. Davenport, U. Bath, UK,
Jean-Guillaume Dumas, Universit�e Joseph Fourier, France,

Vladimir Gerdt, Dubna, JINR, Russia,
Jeremy Johnson, Drexel U., USA,

Erich Kaltofen, North Carolina State U., USA,
Tony Kennedy, U. Edinburgh, UK,

Viktor Levandovskyy, Aachen U., Germany,
Gennadi Malaschonok, Tambov State U., Russia,
Marc Moreno Maza, U. Western Ontario, Canada,

Aleksandr Myllari, Turku U., Finland,
Dana Petcu, Western U. of Timisoara, Romania,

Alexander Tiskin, Warwick U., UK,
Nikolay Vasiliev, PDMI RAS, St. Petersburg, Russia,
Stephen M. Watt, U. Western Ontario, Canada,

Alexey Zobnin, Moscow State U., Russia.

Local Arrangements Committee:

Andrey Betin,
Alexey Lapaev (web-master),

Natalia Malaschonok,
Oxana Pereslavtseva (secretary),

Maxim Starov.

1310

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

UDC 519.612

ESTIMATES OF THE RUNNING TIME AND MEMORY REQUIREMENTS
OF THE NEW ALGORITHM OF SOLVING LARGE SPARSE LINEAR

SYSTEMS OVER THE FIELD WITH TWO ELEMENTS

c© Vasiliy Vadimovich Astakhov
Moscow State University named after M.V. Lomonosov, Leninskie Gory, 1, Moscow, 119991,

Russia, Numbers Theory Department of Information Protection Branch, Student
of Mechanics and Mathematics Faculty, e-mail: astvvas89@mail.ru

Key words: linear sparse systems; pade approximations; corank distribution.
A new algorithm of solving large sparse linear systems over �eld with two elements is
considered in this work. Algorithm was proposed by M.A. Cherepniov. Algorithm uses
the construction of matrix Pade approximations over �nite �elds. It is supposed that
elements of approximation polynomials are independent and are identically distributed.
Method for �nding distributions of coranks of random symmetric, antisymmetric and
common matrices is constructed. Lower and upper bounds for number of previous
approximations su�cient to construct the next one are obtained. The logarithmic
dependence for su�cient number of keeping approximations on every step for successful
completion of algorithm with probability of 0.99 is found. Using the computer program
exact values of estimates of running time and memory requirements are found, results
are given in this work.

1 Introduction

A new algorithm of solving sparse linear systems over Z2 is considered in [1]. Algorithm uses
the construction of matrix Pade approximations over Z2 . Let

α = Σ∞i=0αiλ
−i, αi ∈ F (n× n), n ∈ N, n > 64,

where λ is transcendental variable.
Matrix polynomials Q(s)(λ) ∈ F (n× n)[λ] that satisfy

α(λ)Q(s)(λ)− P (s)(λ) = Σ∞i=s+1pi,sλ
−i

degQ(s) 6 s, degP (s) 6 s,

for some P (s)(λ) ∈ F (n × n)[λ] , are said to be matrix Pade approximations with number s,
or simply s-approximation of the series α(λ) .

Denote the coe�cients of approximation according to the formula:

Q(s)(α) = Σs
i=0Q

(s)
i · λi.

Let Q
(s)
s vanishes. Consider following transformation. With the help of elementary transformations

of the columns of matrix polynomial Q(s)(λ) we reduce its leading term to the form where left
columns are linearly independent and the rest are zeros. Then we multiply columns of reduced

1311

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

matrix polynomial Q(s)(λ) corresponding to the zero columns of its leading term on λ . Repeat
such procedures until the leading term become nonsingular. Denote the necessary number of
such iterations by ζs . There was shown in [1], that for s > k − 1 ful�llment of conditions:

ζs 6 k − 1, ζs−i 6 k − i, i = 1, ..., k − 1,

is su�cient for constructing approximation with the number s+1 , with the help of coe�cients
of approximations with numbers s− k + 1, ..., s .

In this paper we obtain estimates on the expectation of the running time and memory
requirements for the successful completion of the algorithm with high probability.

In the second part of the work we obtain the distribution of coranks of random square
matrices over �nite �elds. In the third part estimates on the distribution of stohastic variable
ζ are obtained. In the fourth part we make the estimates on the expected value and the
distribution of auxiliary stochastic variable τ . In the �fth and sixth parts we obtain �nal
results and give some experimentally established facts.

2 Distribution of coranks of random matrices over Zp

Consider a matrix, whose elements are independent identically distributed random variables
with values in Zp , where p is a prime number. Denote q = 1

p
.

anm[r] - probability that the matrix of size n ×m with values in Zp has rank r . tn[r] -
probability that the matrix of size n× n with values in Zp has corank r . Let bn[r] = ann[r] .
tn[r] = bn[n− r]

Bn(x) - generating function for the distribution of ranks of matrices of size n×n . Tn(x) -
generating function for the distribution of coranks of matrices of size n×n . Bn(x) = xn ·Tn(1

x
)

sn[r] - probability that the symmetric matrix of size n × n with values in Zp have rank
r . fn[r] - probability that the symmetric matrix of size n× n with values in Zp have corank
r . sn[r] = fn[n− r]

Sn(x) - generating function for the distribution of ranks of symmetric matrices of size n×n .
Fn(x) - generating function for the distribution of coranks of symmetric matrices of size n×n .

Sn(x) = xn · Fn(1
x
)

P (A) - probability of the event A .

Statement 1

anm[r] = a(n−1)m[r] · pr−m + a(n−1)m[r − 1] · (1− pr−m−1) n,m, r > 0 (1)

Proof 1 If the matrix E ′ size n×m has rank r , then its submatrix without the last row (of
size n− 1×m) may have a rank r or r− 1 . In the �rst case n -th row is in the linear span of
the previous rows with probability pr

pm
. In the second it is not in the linear span with probability

1− pr−1

pm
. We obtain the required equality. �

Now consider the method that will help us not only to solve this problem for square matrices,
but also for symmetric matrices.

Consider the matrix E of size n × n , rankE = r and discard its last column and row.
The resulting matrix may have a rank r , r− 1 or r− 2 . Denote the last row without the last

1312

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

element for ᾱt , the last column (without the last element) for β̄ , an angular element for e ,
and the matrix (n− 1)× (n− 1) for E ′ .

Lemma 1 Let the matrix E ′ has rank j .

1. β̄ is not in the linear span of its columns, and ᾱt is not in the linear span of its rows.
Then, regardless of the value of e matrix E has rank j + 2 .

2. β̄ is in the linear span of its columns, but ᾱt is not in the linear span of its rows. Then,
regardless of the value of e matrix E has rank j + 1 .

3. β̄ is in the linear span of its columns, and ᾱt is in the linear span of its rows. Then for
exactly one value of the element e matrix E has rank j , and for the rest of them - rank
j + 1 .

Proof 2

1. Consider the �rst n−1 rows of the matrix E , due to the fact, that β̄ is not in the linear
span of the columns of E ′ , rank of such submatrix is equal to rankE ′ + 1 = j + 1 . ᾱt

is not in the linear span of the rows of E ′ , hence the last row of E is not in the linear
span of the �rst n− 1 row. Therefore rank of is equal to j + 2 .

2. Consider the �rst n − 1 rows of the matrix E , due to the fact, that β̄ is in the linear
span of the columns of E ′ , rank of such submatrix is equal to rankE ′ = j . ᾱt is not in
the linear span of the rows of E ′ , hence the last row of E is not in the linear span of the
�rst n− 1 rows. Therefore rank of is equal to j + 1 .

3. Consider the �rst n − 1 rows of the matrix E , due to the fact, that β̄ is in the linear
span of the columns of E ′ , rank of such submatrix is equal to rankE ′ = j . ᾱt is in the
linear span of the rows of E ′ , therefore it is a linear combination of these rows. If we
consider the linear combination of the rows of E with the same coe�cients, we get a row
with the �rst n− 1 elements identical to ᾱt , and the last one is equal to some value e1 .
If e = e1 then last row is in the linear span of the �rst n− 1 and we obtain rankE = j .
Now we will show, that if e is not equal to e1 rank of E is j + 1 . Assume the oppose,
rankE = j and the last row is a linear combination of the �rst n− 1 . Then consider the
row H = (0, 0...0, e − e1) , it is also a linear combination of the �rst n − 1 rows of E ,
hence the rows of matrix E with 0 on the last position are linear combinations of the �rst
n− 1 rows of E . Considering these rows and H we get that the submatrix of �rst n− 1
rows of E have rank rankE ′ + 1 , but it has to be equal to j = rankE ′ . Contradiction
ends the proof.�

Theorem 1

bn[r] = bn−1[r] · p2·(r−n)+1 + bn−1[r − 1] · (p2·(r−n)−1 · (p− 1) + 2 · pr−n · (1− pr−n))+

+bn−1[r − 2] · (1− pr−n−1) · (1− pr−n−1), n, r > 0. (2)

1313

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Proof 3 With the help of Lemma 1 we obtain:
Probability, that E has rank r , under condition, that E ′ has rank r − 2 , is equal to

p1 = (1 − pr−2

pn−1)2 , because it is possible, if and only if the statements of the �rst item are
ful�lled.

Probability, that E has rank r , under condition, that E ′ has rank r − 1 , is equal to
p2 = 2 · (1 − pr−1

pn−1) · pr−1

pn−1 + (p
r−1

pn−1)2 · p−1
p

, because it is possible, if and only if statements of the
second item are ful�lled or statements of the third item are ful�lled and e 6= e1 .

Probability, that E has rank r , under condition, that E ′ has rank r , is equal to p3 =
(pr

pn−1)2 · 1
p
, because it is possible, if and only if statements of the third item are ful�lled and

e = e1 .
We have:

bn[r] = bn−1[r − 2] · p1 + bn−1[r − 1] · p2 + bn−1[r] · p3.

Substituting p1, p2, p3 with found expressions we obtain the required equality.�

Corollary 1

Bn[x] = Bn−1(x ·p2) ·p1−2·n+x ·Bn−1(x ·p2) · (p1−2·n · (p−1)−2 ·p2−2·n)+x ·Bn−1(x ·p) ·2 ·p1−n+

+x2 · (Bn−1(x)− 2 ·Bn−1(x · p) · p1−n +Bn−1(x · p2) · p2−2·n) =

= p1−2·n · (x · p− 1) · (x− 1)Bn−1(x · p2) + 2 · p1−n · x · (1− x) ·Bn−1(x · p) + x2 ·Bn−1(x) (3)

Proof 4 Consider the coe�cient of xr in the right hand side. bn−1[r] · p2·r · p1−2·n in the �rst
summand, bn−1[r−1] ·p2·r−2 ·(p1−2·n ·(p−1)−2 ·p2−2·n) - in the second, bn−1[r−1] ·pr−1 ·2 ·p1−n

- in the third, bn−1[r − 2] · (1− 2 · pr−2 · p1−n + p2·r−4 · p2−2·n - in the fourth. It is identical to
the expression in (2) for bn[r] .�

Corollary 2

sn[r] = sn−1[r] · pr−n + sn−1[r − 1] · pr−n−1 · (p− 1) + sn−1[r − 2] · (1− pr−1−n) (4)

Proof 5 Proof is similar to the Theorem 1, but we have to consider the fact, that some of
the conditions of Lemma 1 can't be satis�ed. Probability, that E has rank r , under condition,
that E ′ has rank r − 2 is equal to p1 = (1− pr−1−n) , because it is possible, if and only if the
statement of the �rst item is ful�lled.(If the last row is not in the linear span of �rst n − 1
columns (without last elements), then due to the simmetry the last column is not in the linear
span of �rst n− 1 rows (without last elements))

Probability, that E has rank r , under condition, that E ′ has rank r − 1 is equal to p2 =
pr−n−1 · (p− 1) , because it is possible, if and only if the statement of the third item is ful�lled
and e 6= e1 .

Probability, that E has rank r , under condition, that E ′ has rank r is equal to p3 = pr−n ,
because it is possible, if and only if the statement of the third item is ful�lled and e = e1 . We
have:

sn[r] = sn−1[r − 2] · p1 + sn−1[r − 1] · p2 + sn−1[r] · p3.

Substituting p1, p2, p3 with found expressions we obtain the required equality. �

1314

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Corollary 3

Sn(x) = (qn + x · (1− q) · qn−1 − qn−1 · x2)Sn−1(x · p) + x2 · Sn−1(x) =

= qn−1 · (1− x) · (q + x) · Sn−1(x · p) + x2 · Sn−1(x). (5)

Proof 6 Proof is similar to the proof of the Corollary 1. Consider the coe�cient of xr in the
left and right hand sides. In the left it is equal to sn[r] , and in the right to qn−r · sn−1[r] + (1−
q) · qn−r · sn−1[r− 1] + (1− qn−r+1) · sn−1r − 2 . Required equality is the result of Corollary 2. �

Due to the equalities Bn(x) = xn · Tn(1/x) è Sn(x) = xn · Fn(1/x) , we obtain

x · Tn(x) = (q · x− 1) · (x− 1) · Tn−1(x · q2) + 2 · (x− 1) · Tn−1(x · q) + Tn−1(x), (6)

x · Fn(x) = (x− 1) · (q · x+ 1) · Fn−1(x · q) + Fn−1(x). (7)

De�ne formal power series T, F from the following equations:

T (x) = (q · x− 1) · T (x · q2) + 2 · T (x · q), (8)

F (x) = (q · x+ 1) · F (x · q). (9)

They are obtained from(8), (9) by replacement of Tn, Tn−1 and Fn, Fn−1 by T and F
respectively.

Denote f [r] and t[r] as coe�cients of xr in F (x) and T (x) , respectively. Obtain them,
considering coe�cients of xr in (8), (9):

t[r] = t[r − 1] · q2·r−1

(1− qr)2
, (10)

f [r] = f [r − 1] · qr

1− qr
=
f [r − 1]

pr − 1
. (11)

Whence we obtain the expressions:

T (x) = tq · (1 +
q · x

(1− q)2
+

q4 · x2

((1− q)(1− q2))2
+ . . .+

qk
2 · xk

((1− q)(1− q2) . . . (1− qk))2
+ . . .), (12)

where we set tq = (1− q)(1− q2) . . . (1− qk)

F (x) = cq · (1 +
x

p− 1
+

x2

(p− 1)(p2 − 1)
+ . . .+

xk

(p− 1)(p2 − 1) . . . (pk − 1)
+ . . .), (13)

where we set cq , such that F (1) = 1 . To �nd cq we prove auxillary Lemma.

Lemma 2
Σ∞i=0Πi

j=1

1

pj − 1
= Π∞i=0

1

1− q2·i+1
(14)

1315

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Proof 7 Let prove, that

Σ2·k+1
i=0

1

Πi
j=1(pj − 1)

= Σk+1
i=1 p

i2 · 1

Πk
j=0(p2·j+1 − 1)

· 1

Πk−i+1
j=1 (p2·j − 1)

(15)

by the mathematical induction. Base case for k = 0, 1 + 1
p−1

= p
p−1

. To prove the inductive
step note the following equality:

pi
2 · 1

Πk
j=0(p2·j+1 − 1)

· 1

Πk−i+1
j=1 (p2·j − 1)

+ pi
2 · 1

Πk+1
j=0(p2·j+1 − 1)

· 1

Πk−i+1
j=1 (p2·j − 1)

=

=
pi

2+2·k+3

Πk+1
j=0(p2·j+1 − 1)

· 1

Πk−i+1
j=1 (p2·j − 1)

=

= p(i+1)2 1

Πk+1
j=0(p2·j+1 − 1)

· 1

Πk−i
j=1(p2·j − 1)

+ p(i+1)2 1

Πk+1
j=0(p2·j+1 − 1)

· 1

Πk−i+1
j=1 (p2·j − 1)

. (16)

Now with the help of induction hypothesis:

Σ2·k+3
i=0

1

Πi
j=1(pj − 1)

= Σk+1
i=1 p

i2 · 1

Πk
j=0(p2·j+1 − 1)

· 1

Πk−i+1
j=1 (p2·j − 1)

+

+
1

Π2·k+2
j=1 (pj − 1)

+
1

Π2·k+3
j=1 (pj − 1)

=

From (16) with i = 0 we obtain:

= Σk+1
i=1 p

i2 · 1

Πk
j=0(p2·j+1 − 1)

· 1

Πk−i+1
j=1 (p2·j − 1)

+
p

Πk+1
j=0(p2·j+1 − 1)

· 1

Πk
j=1(p2·j − 1)

+

+
p

Π2·k+3
j=1 (pj − 1)

= Σk+1
i=2 p

i2 · 1

Πk
j=0(p2·j+1 − 1)

· 1

Πk−i+1
j=1 (p2·j − 1)

+

+
p4

Πk+1
j=0(p2·j+1 − 1)

· 1

Πk−1
j=1(p2·j − 1)

+ Σ2
i=1p

i2 · 1

Πk+1
j=0(p2·j+1 − 1)

· 1

Πk−i+2
j=1 (p2·j − 1)

With the help of (16) with i = 2, . . . , l − 1 we get:

= . . . = Σk+1
i=l p

i2 · 1

Πk
j=0(p2·j+1 − 1)

· 1

Πk−i+1
j=1 (p2·j − 1)

+

+
pl

2

Πk+1
j=0(p2·j+1 − 1)

· 1

Πk+1−l
j=1 (p2·j − 1)

+ Σl
i=1p

i2 · 1

Πk+1
j=0(p2·j+1 − 1)

· 1

Πk−i+2
j=1 (p2·j − 1)

=

And in the result:

= . . . = Σk+2
i=1 p

i2 · 1

Πk+1
j=0(p2·j+1 − 1)

· 1

Πk−i+2
j=1 (p2·j − 1)

.

In the left side of (15) are partial sums of the series from (14). And in the right:

Σk+1
i=1 p

i2 · 1

Πk
j=0(p2·j+1 − 1)

· 1

Πk−i+1
j=1 (p2·j − 1)

> p(k+1)2 · 1

Πk
j=0(p2·j+1 − 1)

.

1316

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Σk+1
i=1 p

i2 · 1

Πk
j=0(p2·j+1 − 1)

· 1

Πk−i+1
j=1 (p2·j − 1)

=

= p(k+1)2 · 1

Πk
j=0(p2·j+1 − 1)

+ p(k+1)2 · 1

Πk
j=0(p2·j+1 − 1)

· Σk
i=1p

(k+1)2−i2 · 1

Πk−i+1
j=1 (p2·j − 1)

6

6 p(k+1)2 · 1

Πk
j=0(p2·j+1 − 1)

· (1 + k · p−(2·k+1)).

Whence we obtain, that expression in the right side of (15) tends to the right side of (14).
Lemma is proved.�

Therefore cq = (1− q)(1− q3) . . . (1− q2·k+1)
Using (2) and (4) and equalities tn[r] = bn[n− r], sn[r] = fn[n− r] (or equating coe�cients

of xr+1 in (6), (7)) we obtain:

tn[r] = q2·r−1tn−1[r− 1]− ((q+ 1) · q2·r− 2 · qr) · tn−1[r] + (q2·r+2− 2 · qr+1 + 1) · tn−1[r+ 1], (17)

fn[r] = qr · fn−1[r − 1] + (1− q) · qr · fn−1[r] + (1− qr+1) · fn−1[r + 1]. (18)

Consider the ratios f̃i[r] = fi[r]
f [r]

and t̃i[r] = ti[r]
t[r]

.

Lemma 3 For each value of i f̃i[r], t̃i[r] do not increase.

Proof 8 We will use mathematical induction on i . Base case: i = 0 we obtain: f̃i[r] = f̃i[1] =
0, r > 0 . Consider the induction step.

Let ˜fi−1[r] = A, ˜fi−1[r + 1] = B,B 6 A . We have:

f̃i[r]−f̃i[r+1] =
f̃i[r − 1] · qr · f [r − 1] + f̃i[r] · (1− q) · qr · f [r] + f̃i[r + 1] · (1− qr+1) · f [r + 1]

f [r]
−

− f̃i[r] · q
r+1 · f [r] + f̃i[r + 1] · (1− q) · qr+1 · f [r + 1] + f̃i[r + 2] · (1− qr+2) · f [r + 2]

f [r + 1]
>

>
A · qr · f [r − 1] + A · (1− q) · qr · f [r] +B · (1− qr+1) · f [r + 1]

f [r]
−

−A · q
r+1 · f [r] +B · (1− q) · qr+1 · f [r + 1] +B · (1− qr+2) · f [r + 2]

f [r + 1]
= I.

From (7) multiplicating by x−1 and considering coe�cients of xr+1 we obtain equality f [r] =

qr · f [r − 1] + (1− q) · qr · f [r] + (1− qr+1) · f [r + 1] and using equality (11) f [r+1]
f [r]

= pr+1 − 1
we have:

I = (A−B)(qr · (pr − 1) + (1− q) · qr − qr+1

pr+1 − 1
) > 0.

Step is proved. Proof for t̃i[r] is similar. �

Statement 2 tn[r], fn[r] converge to the t[r], f [r] , when n tends to the in�nity.

1317

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Proof 9 From Lemma 3, (17) and (18) we have:

f̃i[0] = (1− q) · ˜fn−1[0] + (1− q) · q

(1− q)
˜fn−1[1] 6 ˜fn−1[0],

t̃i[0] = −((q + 1)− 2) · ˜tn−1[0] + (q − 1)2 · q

(1− q)2
˜tn−1[1] 6 ˜tn−1[0],

therefore t̃n[0] and f̃n[0] decrease according to i , and hence converge to some limits f̃ and t̃ ,
hence tn[0] and fn[0] have limits. Now, using mathematical induction on r , we will prove that
tn[r] and fn[r] converge to some limits. Base case for r = 0 is proved. Let prove the induction
step. From (17),(18) we have:

(1− qr+1) · fn−1[r + 1] = fn[r]− qr · fn−1[r − 1]− (1− q) · qr · fn−1[r]

(q2·r+2 − 2 · qr+1 + 1) · tn−1[r + 1] = tn[r]− q2·r−1tn−1[r − 1] + ((q + 1) · q2·r − 2 · qr) · tn−1[r]

Whence , convergence of the right hand side, we obtain that left side also converges. Step is
proved. Limits satisfy (8) and (9), hence are equal to c1 · t[r], c2 · f [r] Because of the choice of
tq and cq constants are equal to 1 . �

Following results were computationly obtained, if p = 2 : t[0] ≈ 0.2887881, t[1] ≈ 0.5775762,
t[2] ≈ 0.1283503, t[3] ≈ 0.0052388 . Also we have t[i] 6 c · qi2 , for some constant c .
Lemma 4

tn[r] = qr
2 ·

(
∏n

i=r+1(1− qi))2∏n−r
i=1 (1− qi)

(19)

Proof 10 We will prove using mathematical induction on n . Base case for n = 0 t0[0] = 1 .
Let prove the induction step, from (17):

tn[r] = q2·r−1 · tn−1[r− 1]− ((q + 1) · q2·r − 2 · qr) · tn−1[r] + (q2·r+2 − 2 · qr+1 + 1) · tn−1[r + 1] =

using induction hypothesis:

= q2·r−1 · q(r−1)2 · (
∏n−1

i=r (1− qi))2∏n−r
i=1 (1− qi)

− ((q + 1) · q2·r − 2 · qr) · qr2 ·
(
∏n−1

i=r+1(1− qi))2∏n−r−1
i=1 (1− qi)

+

+(q2·r+2 − 2 · qr+1 + 1) · q(r+1)2 ·
(
∏n−1

i=r+2(1− qi))2∏n−r−2
i=1 (1− qi)

= qr
2 ·

(
∏n−1

i=r+1(1− qi))2∏n−r
i=1 (1− qi)

·

·((1− qr)2 − (1− qn−r) · ((q + 1) · q2r − 2 · qr) + q2·r+1 · (1− qn−r) · (1− qn−r−1)) =

= qr
2 ·

(
∏n

i=r+1(1− qi))2∏n−r
i=1 (1− qi)

.

Lemma is proved. � .

Statement 3 When p = 2 at a �xed r0 not equal to 0 sequence tn[r0] increases, when
n = r0, r0 + 1, . . . and decreases in case r0 = 0 .

Proof 11 From Lemma 4:

tn+1[r0]

tn[r0]
=

(1− qn+1)2

(1− qn+1−r0)
=

1− qn + q2·n+2

1− qn+1−r0
.

When r0 = 0 we have qn+1 + q2·n+2 < qn , hence ratio is smaller than 1 and sequence tn[0]
decreases. When r0 > 1 we have qn+1−r0 + q2·n+2 > qn , hence ration is bigger than 1 and
sequence tn[r0] increases. �

1318

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

3 Distribution of stohastic variable ζ

Consider following stohastic process. On the zero step matrix A0 over Z2 with size n × n is
constructed, each element of A0 is 0 or 1 with probability 1

2
. With the help of elementary

transformations of the columns of matrix A0 we reduce it to the form where left columns
are linearly independent and the rest are zeros. On the �rst step we construct A1 randomly
�lling zero-columns of A0 , and reducing it to the form with corankA1 zero-columns at the
end. Similarly we construct A2, A3 . . . Ai . . . �lling zero-columns of the previous matrix and
reducing it to the form with corank zero-columns at the end.

Denote for ζ = min{i|corankAi = 0} . Constructed stohastic variable is identical to ζ from
[2]. Note, that if corank of Ai is equal to k , then considering columns of Ai+1 in basis, which
contains �rst n − k colums of Ai , we obtain that corank of Ai+1 is distributed as corank of
random matrix with size k × k . Denote for µn,k = P (ζ = k) . Then µn,0 = tn[0] ,

µn,k = Σn
i=1tn[i] · µi,k−1. (20)

Now we obtain lower and upper bounds for µn,k .

µn,k = tn[n]k · tn[0] + Σk−1
i=0 Σn−1

j=1 tn[n]i · tn[j] · µj,k−i−1.

Where i is number of zero-matrices, and j is a corank of the �rst none-zero. Then µ1,k =
(1

2
)k+1 .

µ2,k =
3

8
· (1

16
)k +

9

16
· Σk−1

i=0 (
1

16
)i · (1

2
)k−i =

=
3

8
· (1

16
)k +

9 · ((1
2
)k − (1

16
)k)

32 · (1
2
− 1

16
)

=
9

14
· (1

2
)k − 15

56
· (1

16
)k.

Similarly we have

µ3,k =
7

10
· (1

2
)k − 105

248
· (1

16
)k +

511

9920
· (1

512
)k.

Now we obtain lower and upper bounds for µn,k, n > 3 . We do this by selecting the �rst
moment when corank is lesser or equal 3 . From Statement 3 α = Σ∞i=4t[i] - is upper bound for
probability of random matrix to have corank greater than 3. Using Statement 3 we obtain:

µn,k 6 (α)k · t4[0] + Σk−1
i=0 Σ3

j=1(α)i · t[j] · µj,k−i−1 6

Replacing µ1,k, µ2,k, µ3,k by obtained values and using known tresholds for t we have :

6 0.75001 · (1

2
)k − 0.58599 · (1

16
)k + 0.14156 · (1

512
)k + 0.00207 · (α)k, (21)

α = 1− Σ4
i=0t[i] 6 0.0000467,

µn,k > (t4[4])k · t[0] + Σk−1
i=0 Σ3

j=1(t4[4])i · t4[j] · µj,k−i−1 >

Replacing µ1,k, µ2,k, µ3,k by obtained values and using known thresholds for t we have :

> 0.72580 · (1

2
)k − 0.50404 · (1

16
)k + 0.09126 · (1

512
)k − 0.02425 · (1

65536
)k (22)

1319

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

hence when k > 2 we obtain:

(0.72580− 0.50404 · 1

64
) · (1

2
)k = 0.717924 · (1

2
)k 6 µn,k 6 0.75001 · (1

2
)k. (23)

Now we will found bounds for Σk = −Σ∞i=kln(P (ζ 6 i)) (13) , auxillary value, which we will
use later. From (23):

1− 0.75001 · (1

2
)k 6 1− P (ζ > k) =

= P (ζ <= k) 6 1− (0.72580− 0.50404 · 1

64
) · (1

2
)k 6 1− 0.717924 · (1

2
)k, k > 2, (24)

0.62036 6 P (ζ 6 1) 6 0.62744. (25)

Then when k > 2 we have:

Σk = −Σ∞i=kln(P (ζ 6 i)) = Σ∞i=kΣ
∞
j=1

(1− P (ζ 6 i))j

j
= Σ∞j=1

Σ∞i=k(1− P (ζ 6 i))j

j
.

We obtain the bounds:

Σk > Σ∞j=1

Σ∞i=k(0.717924)j · (1
2
)i·j

j
= Σ∞j=1

(0.717924 · 1
2k

)j

j · (1− 1
2j

)
>

> 2 · (0.717924) · 1

2k
+

4

3
· (0.717924)2 · 1

4k
, (26)

Σk 6 Σ∞j=1

Σ∞i=k(0.75001)j · (1
2
)i·j

j
= Σ∞j=1

(0.75001 · 1
2k

)j

j · (1− 1
2j

)
6

6 2 · (0.75001) · 1

2k
+

4

3
· (0.75001)2 · 1

4k
· 1

1− (0.75001) · 1
2k

. (27)

4 Expected value and distribution of auxillary stohastic

variable τ

There was shown in [1] , that for r > t− 1 > 0 ful�llment of inequalities

ζr 6 t− 1, ζr−1 6 t− 1, ζr−2 6 t− 2, . . . , ζr−t+1 6 1

is su�ciently, for constructing approximation with number r + 1 with the help of coe�cients
of approximations with numbers r, r − 1, . . . , r − t . For simpli�cation we denote

ξ1 = ζr, . . . , ξt = ζr−t+1,

Let:
θ = min{t > 1 : ξ1 6 t− 1, ξi 6 t− i+ 1, i = 2, . . . , t},

τ = min{t > 1 : ξi 6 t− i+ 1, i = 1, . . . , t}.

Let Π(i) = Πi
k=1P (ξ 6 k),Π(0) = 1 , and f(s) is generating function of distribution of τ .

1320

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Lemma 5
P (τ = k) = Σn,ai∈N∪{0},a1+...+an=k(−1)n−1 · Πn

i=1Π(ai), k ∈ N (28)

Proof 12 We will prove using mathematical induction on k . Base case for k = 1 : P (τ =
1) = P (ξ 6 1) = Π(1) . Induction step:

P (τ = k) = P ({ξi 6 k−i+1, i = 1, 2, . . . , k}\
k−1⋃
j=1

{τ = j, ξj+i 6 k−j−i+1, i = 1, 2, . . . , k−j}) =

(it is true, that ξi 6 k − i+ 1, i = 1, 2, . . . , k , but it is not true that τ < k .)

= Π(k)− Σk−1
j=1Π(k − j) · P (τ = j) = Π(k)+

+Σk−1
an+1=1(−Π(an+1)) · Σn,ai∈N∪{0},a1+...+an=k−an+1(−1)n−1 · Πn

i=1Πai =

= Σn,ai∈N∪{0},a1+...+an=k(−1)n−1 · Πn
i=1Π(ai).

Lemma is proved.�

Statement 4
1

1− f(s)
= Σ∞i=0Π(i) · si, 0 < s < 1 (29)

Proof 13 Using the fact, that 1− 1
1+x

= Σ∞i=1(−1)i−1 · si we obtain:

1− 1

1 + Σ∞i=1Π(i) · si
= Σ∞j=1(−1)j−1(Σ∞i=1Π(i) · si)j =

= Σ∞j=1Σn,ai∈N∪{0},a1+...+an=k(−1)n−1 · Πn
i=1Π(ai) · sj = f(s)

when 0 < s < 1 . Whence we obtain the required equality.�

Theorem 2
2.382189 6Mτ 6 2.484705 (30)

12.797192 6Mτ 2 6 14.300803 (31)

Proof 14 Let Π(∞) = Π∞i=1P (ξ 6 i) . Because

Σi = −ln(Π(∞)) + ln(Π(i− 1)), (32)

then using (25), (27) (26) we obtain 0.402462 6 Π(∞) 6 0.419781 . We have, that if s → 1
then right hand side tends to in�nity, hence f(1) = 1 . Then, multiplicating both parts of (29)
by 1− s we have:

1− s
f(1)− f(s)

= 1 + Σ∞i=1(Π(i)− Π(i− 1)) · si. (33)

When s→ 1 we have:
f ′(1)−1 = Π∞. (34)

Hence we obtain lower and upper bounds for Mτ = f ′(1) : 2.382189 6Mτ 6 2.484705 .

1321

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

From

(1− s) · Σ∞i=0(Π(i)− Π(∞)) · si = 1− Π(∞) + Σ∞i=1(Π(i)− Π(i− 1)),

we have:
1−s

f(1)−f(s)
− f ′(1)−1

1− s
= Σ∞i=0(Π(i)− Π(∞)) · si

reducing left side to the common denominator and proceeding to the limit, when s→ 1

f ′′(1)

2 · f ′(1)2
= Σ∞0 (Π(i)− Π(∞)).

Now from (32) and (34) we have:

f ′′(1) = 2 · f ′(1) · (Σ∞i=1exp(Σi)− 1). (35)

From (34) and (35) and using Taylor series for exponent:

f ′′(1) = 2 · f ′(1) · ((f ′(1)− 1) + Σ∞i=2Σ∞j=1

(Σi)
j

j!
).

From (26) and (27) we know, that c1 ·2−i+1 6 Σi 6 c2 ·2−i+1 , where c1 = 0.71792, c2 = 0.77884 .
Now from (30) we obtain inequalities

f ′′(1) > 6.58527 + 4.764378 · Σ∞k=1(0.71792 · 2−k+1 + 0.5 · (0.71792)2 · 4−k+1) > 10.415003,

f ′′(1) 6 7.378108+4.96941·Σ∞k=1(0.77884·2−k+1+0.5·(0.77884)2·4−k+1+
(0.77884)3 · 8−k+1)

6 · (1− (0.77884)3 · 0.25)
6

6 11.816098.

Mτ 2 = f ′′(1) + f ′(1) , using (30) we obtain required inequality. �

Now we will obtain bounds for values of all derivatives. Let γ(s) = f(s)−1
s−1

, g(s) = 1−Σ∞i=1Π(i−
1) · P (ζ > i) . From (33)

1− s
1− f(s)

= 1− Σ∞i=1Πi−1 · P (ζ > i) · si,

γ(s) · g(s) = 1.

Di�erentiating this equality n times:

Σn
i=0

(
n

i

)
· γ(n−i)(s) · g(i)(s) = 0,

γ(n)(s) =
−Σn

i=1

(
n
i

)
· γ(n−i)(s) · g(i)(s)

g(s)
. (36)

Note, that g(i)(s) < 0 < g(s) , when 0 6 s 6 1, i > 1 . Hence, if for some functions g1(s), g2(s)
the following statements are full�lled:

g1(s0) = g2(s0) = g(s0), (37)

1322

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

g
(i)
1 (s0) 6 g(i)(s0) 6 g

(i)
2 (s0) < 0, i > 1, (38)

then

(
1

g2

)(i)(s0) 6 γ(i)(s0) 6 (
1

g1

)(i)(s0), i > 1. (39)

We take gi equal to αi − βi
1− s

2
, αi = g(s0) + βi

1− s0
2

,for satis�yng (37) and β1 = 0.75001 , and

β2 == 0.28893 6 0.71792 · Π(∞) ,is su�cient due to the defenition of g(s) and (24) to satisfy
(38) . Then

(
1

gi
)(n)(s0) = (

1− s
2

αi − βi − αi·s
2

)(n)|s=s0 = n! · 2 · βi · αni
αi · (2 · (αi − βi)− αi · s0)n+1

, n > 1.

We obtain, taking αi, βi, s0 ∈ {0, 1}

0.22416 · (0.64446)n · n! 6 γ(n)(0) 6 0.42857 · (0.87501)n · n! (40)

1.37657 · (2.37657)n · n! 6 γ(n)(1) 6 1.95908 · (4.72711)n · n! (41)

Whence we obtain bounds for derivatives of function f(s) .

1.37657 · (2.37657)n−1 · n! 6 f (n)(1) 6 1.95908 · (4.72711)n−1 · n!

Now we will �nd bounds for P (τ > n) .

f (n)(0) = i · γ(n−1)(0) + γ(n),

P (τ = n) =
f (n)(0)

n!
=

γ(n−1)

(n− 1)!
− γ(n)

n!
,

hence:

P (τ > i) =
γ(i)

i!
. (42)

Now from (40) we obtain:

0.22416 · (0.64446)i 6 P (τ > i) 6 0.42857 · (0.87501)i. (43)

Here we can obtain more precise upper bounds for P (τ > i) , using polynomials of higher
degree. For example consider function g̃1(s) = α−β ·s− δ

1− s
2
, where α = 1+δ, δ = 0.47060, β =

0.14434 = 0.37964− 0.23530 > g′(0)− 0.5 · δ . Then g̃1(0) = g(0) and g̃1
(n) 6 g(n) , and hence

γ(n)(0) < 1
g̃1

(n)
(0). From the other side:

1

g̃1(s)
=

2− s
β · s2 − (2 · β + α) · s+ 2

=
c1

s1 − s
+

c2

s2 − s

wher s1, s2 are roots of the polynomial in denominator, c1 = 2−s1
β·(s2−s1)

, c2 = 2−s2
β·(s1−s2)

. Finding
s1 and s2 we obtain:

γ(n)(0) < n! · (c1 · s−n1 + c2 · s−n2) 6 n!(0.52487 · (0.78807)n+1 + 6.40328 · (0.09157)n+1).

1323

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Similarly taking ˜̃g1(s) = α− β · s− ε · s2 − δ
1− s

2
we have:

1
˜̃g1(s)

=
2− s

2− 1.7593 · s+ 0.14435 · s2 + 0.21115 · s3

and upper bound:

P (τ > n) =
γ(n)(0)

n!
< 0.41973 · (0.76773)n + 0.19412 · (0.07398)n + 0.38590 · (0.18590)n. (44)

5 Expected value of stochastic variable θ

Now we will found lower and upper bounds for expected value of θ .

Theorem 3
3.63148 6Mθ 6 3.84696 (45)

22.33992 6Mθ2 6 29.58587 (46)

Proof 15 Let ω be an event, in which ζ1 = i . Then, if ζk 6 i − k + 1, k = 2, . . . , i , then
θ = i + τ̃ = τ(ω) + τ̃ , where τ̃ , τ are variables identically and independently distributed, in
other case θ = τ . We have:

Mθ = Mτ · (1 + Σ∞i=1P (ζ = i) · Π(i− 1)) (47)

Mθ

Mτ
> 1 + P (ζ = 1) + P (ζ = 2) · Π(1) + P (ζ = 3) · Π(2) + P (ζ > 3) · Π(∞)

Mθ

Mτ
6 1 + P (ζ = 1) + P (ζ = 2) · Π(1) + P (ζ = 3) · Π(2) + P (ζ > 3) · Π(3)

3.63148 < 1.52443Mτ < Mθ < 1.54826Mτ < 3.84696

Now we �nd bounds for Mθ2 . Let I1 be a stohastic variable equal to 1 , if ∃k|ζ1 = k, ζi 6
k − i + 1, i = 2, . . . , k and 0 in other case. Then θ = τ + I1 · τ̃ . Note, that I1 and τ̃ are
independent variables. We have:

Mθ2 = Mτ 2 + 2 ·Mτ · τ̃ · I1 +M(τ̃ · I1)2 =

= Mτ 2(1 +MI2
1) + 2 ·Mτ · I1 ·Mτ = Mτ 2(1 +MI1) + 2 ·Mτ ·Mτ · I1 (48)

Note, that 1 +MI1 = Mθ
Mτ

. Hence, it's enough to �nd bounds for Mτ · I1 .

Mτ · I1 = Σ∞i=1i · P (ζ = i) · Π(i− 1).

Using (21) and (22) we obtain:

Mτ · I1 6 Σ∞i=1i · 0.75001 · (1

2
)i = 1.50002 (49)

Mτ · I1 > Σ∞i=1i · (0.72580 · (1

2
)i − 0.50404 · (1

16
)i) · Π(∞) = 1.41575 · (Mτ)−1 (50)

At the end using (30), (31), (49),(50), inequalities for MI1 and equality (48) we have:

22.33992 6Mθ2 6 29.58587

� .

1324

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

6 Upper bound for algorithm's memory requirements

For the work of the algorithm from [1], we have to keep θ previous approximations to construct
the new one. Further we talk about probabilities under conditition of successfully completion
of �rst r steps, where r � number of stored approximations.

Theorem 4 For successful execution of the algorithm with probability 0.99 on matrices of size
2s and block-size 2k , where (s− k) > 10 , is su�cient to keep 2.622407 · (s− k) + 18.805443
previous approximations.

Proof 16 We will �nd the number of approximations n for successful execution of l steps of
algorithm with probability bigger than 0.99 . This probability will be bigger or equal to
1− l · P (θ > n) . Hence it is su�cient, that P (θ > n) < 0.01

l
. From (21) and (44):

P (θ > n) = P (τ > n) + Σn−1
i=1 P (ζ = i) · Π(i− 1) · P (τ > n− i), (51)

P (θ > n) 6 P (τ > n) + 0.33866 · P (τ > n− 1)+

+0.47059Σn−1
i=2 2−i · (0.41973 · (0.76773)n−i + 0.19412 · (0.07398)n−i + 0.38590 · (0.18590)n−i) 6

6 0.90382 · (0.76773)n−1 + 0.06601 · (0.07398)n−1 + 0.33866 · (0.5)n−1 + 0.23154 · (0.18590)n−1.

Number of steps of the algorithm is equal to l = 2s−k . n will be large, so P (θ > n) <
0.90383 · (0.76773)n−1 , and it is true, if n = 2.622407 · (s− k) + 18.805443 .�

Theorem 5 For successful execution of the algorithm with probability 0.99 on matrices of size
2s and block-size 2k , where (s − k) > 10 , is necessary to keep 1.3 · (s − k) + 6.22 previous
approximations.

Proof 17 Let r be the number of stored approximations. Then {θi > r} and {θi+r > r} are
independent events. Than probability of successful execution of the algorithm is not bigger than
1− P (θ > r) · 2s−k

r
. Using (51), (22) and (43) we obtain:

P (θ > n) > P (τ > n) + 0.33139 · P (τ > n− 1) + 0.05947 · P (τ > n− 2) >

> 0.22416 · (0.64446)n · (1 + 0.51421 + 0.14318) = 0.37152 · (0.64446)n.

Hence, when r < 1.3 · (s− k) + 6.22 , 1− P (θ > r) · 2s−k

r
< 0.99 . �

7 Computed results

Obtained probabilities can be computed for n = 64 using computer. Distribution of coranks
of matrices with size non-greater than 64 we compute using formulas from the �rst part.
Functions µ64,k we compute from (20), up to k 6 64 . Further members of the product from
the right side of formula Mτ = (Π(∞))−1 can be discarded, because their product di�ers
from 1 lesser than ≈ 2−63 . We have Mτ ≈ 2.39 . To compute Mθ we use (47): Mθ ≈ 3.67 .
Then using (29) and (51), we compute P (τ > k), P (θ > k) and obtain that, for k > 30
P (τ > k) ≈ 0.13816 · (0.75471)k+1 ,P (θ > k) ≈ 0.26795 · (0.75471)k+1 , hence for k = 60 with
probability bigger than 0.99 algorithm will be successfully executed. 60 will require less than

1325

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

30 gigabyte of memory.

In the proof of theorem 4, expression 1 − l · P (θ > k) was used to �nd lower bound for
probability of successful execution. But P (θ > k) will not be summarized, and this probability
will be higher. Also on the �rst step, because of the small size of approximation polynomials we
can keep much more approximations. Compute the probability, that using m GB of memory,
algorithm for matrix of size N and block-size n > 64 will be successfully executed. We will
�x K - maximal number of kept approximations. Let g[i][j] be the probability of successfully
execution of i steps with the condition θi = j . g[0][0] = 1.0 . Let �nd g[i][k] . Memory
restriction on the number of kept approximations li on the i-th step is i−1+i−2+. . .+i−li 6
m·233
s2

. li(i− (li+1)
2

) 6 m
s2

, whence �nd li . Let li = min(li, K) . Then run through k = 1, . . . , li .
If θi = k one of the inequalities from the de�nition of θ has to turn in equality. If it is not the
�rst inequality, than let it be with number k− j+ 1 . Then probability of this event is equal to

P (ζ = j) ·Π(j−1) · (P (ζ 6 k−2) ·Πk−1
i=j+1P (ζ 6 i−1)−P (θ 6 k− j|ζi 6 k− i, i = 2, . . . k− j))

. Note, that for i− j+ 1 6 h 6 i , will be su�cient memory, and if it will be su�cient for i− j -
th step, it will be su�cient for all steps with numbers from i − k + 1 to i − j − 1 . Hence
θi−k 6 li−j − j , summarizing obtained probabilities Σ

li−j−j
z=0 g[i− j][z] we obtain the answer in

this case. In the case when ζi = k − 1 , we will also focus on the case of �rst equality:

P (ζ = k − 1) · (Σk−1
z=1Π(z − 1) · P (ζ = z) · Πk−1

j=z+1P (ζ 6 j − 1) · Σli−z−z
p=0 g[i− k][p]+

+Π(k − 1) · P (ζ = 0) · Σn
p=0g[i− k][p]).

Now we compute for N
n

steps, under condition of successful execution of �rst g ≈ 100 steps
we obtain the probability of successful execution of the algorithm. Using this algorithm was
obtained, that for matrix of size N = 226 and block-size n = 26 is su�cient m = 26 GB of
memory, and block-size n = 211 m = 650 GB of memory.

8 Conclusion

Algorithm from [1] was known, but there wasn't (or was but not very accurate) theoretically
estimates of its e�ciency. In this work the lower and upper bound for the expected number of
previous approximations is obtained:

3.63148 6Mθ 6 3.84696.

In the previous works only upper bounds were obtained. In [1] it was some constant C
independent from the size of matrix. In [2] the result Mθ < 7.233 was obtained. Logarifmically
depended on size of matrix lower and upper bounds are found for memory requirements. There
were not any similar results before. Method proposed by A.M. Zubkov was used to obtain the
results.
Using this results it can be shown that the algorithm from [1] is better (for exmaple by number
of operations and memory usage) than other existing algorithms. Distribution of coranks of
random (symmetric and none-symmetric) matrices were already known(papers: [3],[4]), but the
method proposed in this paper is new and may be used for similar calculations in other cases(for
example anti-symmetric matrices).

1326

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

References

1. Cherepniov M.A. Block Lancosh-based algorithm for solving sparse linear systems //
Discrete Mathematics (in Russian). 2008. V. 20. N. 1. P. 145-150.

2. Cherepniov M.A. Algorithms of constructing Pade-approximations // Materials of the
Fourth international scienti�c conference on the problems of security and counter terrorism.
Moscow State university named after M.V. Lomonosov, 30�31 october 2008. V. 2.
Materials of the seventh all-russian conference "Mathematics and Security of Information
Technologies" (MaSIT-2008). Moscow: MCCME, 2009. P. 21-22.

3. Goldman J., Rota G.-C. On the foundations of combinatorial theory IV: Finite vector
spaces and Eulerian generating functions // Stud. Appl. Math. 1970. V. 49(3). P. 239-258.

4. Carlitz L. Representations by quadratic forms in a �nite �eld // Duke Math. 1954. J. 21.
P. 123-137.

Accepted for publication 7.06.2010.

ÎÖÅÍÊÀ ÎÆÈÄÀÅÌÎÃÎ ÂÐÅÌÅÍÈ ÐÀÁÎÒÛ È ÍÅÎÁÕÎÄÈÌÎÃÎ
ÎÁÚ�ÌÀ ÏÀÌßÒÈ ÄËß ÓÑÏÅØÍÎÃÎ ÇÀÂÅÐØÅÍÈß ÀËÃÎÐÈÒÌÀ

ÐÅØÅÍÈß ÁÎËÜØÈÕ ÐÀÇÐßÆÅÍÍÛÕ ÑÈÑÒÅÌ ËÈÍÅÉÍÛÕ
ÓÐÀÂÍÅÍÈÉ

c© Âàñèëèé Âàäèìîâè÷ Àñòàõîâ
Ìîñêîâñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò èì. Ì.Â. Ëîìîíîñîâà, Ëåíèíñêèå ãîðû, 1,
Ìîñêâà, 119991, Ðîññèÿ, êàôåäðà òåîðèè ÷èñåë, ñòóäåíò ìåõàíèêî-ìàòåìàòè÷åñêîãî

ôàêóëüòåòà, e-mail: astvvas88@mail.ru

Êëþ÷åâûå ñëîâà: ðàçðÿæåííûå ëèíåéíûå ñèñòåìû; àïïðîêñèìàöèè Ïàäå; ðàñïðåäå-
ëåíèå êîðàíãîâ.
Â ðàáîòå ðàññìàòðèâàåòñÿ àëãîðèòì ðåøåíèÿ áîëüøèõ ðàçðåæåííûõ ëèíåéíûõ ñè-
ñòåì íàä Z2, èñïîëüçóþùèé ïîñòðîåíèå ìàòðè÷íûõ àïïðîêñèìàöèé Ïàäå. Ïðåä-
ïîëàãàåòñÿ, ÷òî ýëåìåíòû àïïðîêñèìàöèîííûõ ìíîãî÷ëåíîâ ñòàòèñòè÷åñêè íåçàâè-
ñèìû è ðàâíîìåðíî ðàñïðåäåëåíû. Ñòðîèòñÿ ìåòîä äëÿ íàõîæäåíèÿ ðàñïðåäåëå-
íèé êîðàíãîâ äëÿ ñëó÷àéíûõ ñèììåòðè÷íûõ, êîñîñèììåòðè÷íûõ è îáû÷íûõ ìàò-
ðèö. Äàþòñÿ îöåíêè ñâåðõó è ñíèçó íà ñðåäíåå ÷èñëî ïðåäûäóùèõ àïïðîêñèìàöèé,
íåîáõîäèìûõ äëÿ ïîñòðîåíèÿ íîâîé àïïðîêñèìàöèè. Âûÿâëåíà ëîãàðèôìè÷åñêàÿ
çàâèñèìîñòü äëÿ äîñòàòî÷íîãî ÷èñëà õðàíèìûõ àïïðîêñèìàöèé íà êàæäîì øàãó,
äëÿ óñïåøíîãî çàâåðøåíèÿ àëãîðèòìà ñ âåðîÿòíîñòüþ 0,99. Ñðåäíèå çíà÷åíèÿ è
íåîáõîäèìûé îáúåì ïàìÿòè âû÷èñëåíû ïðè ïîìîùè àëãîðèòìà, ðåçóëüòàòû òàêæå
ïðèâåäåíû â ðàáîòå.

1327

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

UDC 519.688

PARALLEL COMPUTATION OF LAGRANGE RESOLVENTS BY
MULTI-RESOLVENTS

c© Philippe Aubry, Annick Valibouze
LIP6, UPMC, 4, place Jussieu, F-75252 Paris Cedex 05, France,
e-mail: Philippe.Aubry@upmc.fr, Annick.Valibouze@upmc.fr

Key words: Lagrange resolvent; Galois group; galoisian ideal; triangular ideal; double
class; parallel computation.
The goal of this paper is the parallel computation of Lagrange resolvents of a univariate
polynomial. The computation of Lagrange resolvents of a univariate polynomial has
signi�cance for Galois Theory. Since Lagrange's algorithms, many other algorithms
for computing some particular resolvents, called absolute, were developed from the
fundamental theorem of symmetric functions. The algebraic algorithms for non absolute
resolvents are few and recent because they use galoisian ideals that were introduced
recently. However these algorithms become time and space consuming when the degree
of the polynomial increases. This motivates their parallelization. Rennert proposed a
multi-modular method for computing absolute resolvents of polynomials with integer
coe�cients. We show that the same techniques can be extended to any resolvent.
This method is naturally parallelizable. Moreover, we give a decomposition formula
of resolvents which makes possible another level of parallelization. This leads to an
algorithm with a doubly parallel character.

1 Introduction

The Lagrange resolvent of a univariate polynomial f is a fundamental tool in Galois theory
(see [1] and [2]). It is a univariate polynomial obtained from a multivariate polynomial
transformation of f . Its factors are used to describe the action of the Galois group on another
group stabilizing the multivariate polynomial Θ used for the transformation; hence, they
determine the Galois group of f by using matrices of groups; moreover, the evaluation in
Θ of any factor of the resolvent produces a minimal polynomial of a galoisian ideal (see [3]).
The parallel method that we describe is inspired by Rennert's work (see [4]) for the restricted
case of the resolvents relative to the symmetric group, called absolute resolvents. Nevertheless
Rennert's method cannot be adapted automatically to the general case of resolvents relative to
subgroups of the symmetric group. The reader can refer to Example 1 that illustrates one of
the simpli�cations existing when the reference group is the symmetric group. This paper does
not only extend to any resolvent the multimodular parallelisation proposed by Rennert, but
presents another level of parallelisation thanks to a new decomposition formula of resolvents
given in Theorem 1. Moreover, the theoretical study that leads to this decomposition, together
with the description of a strategy for the parallel computation, bring to the subject greater
clarity.

Section 2 introduces galoisian ideals and Lagrange resolvents with some properties. Section
3 establishes Theorem 1 in which the resolvent splits into factors corresponding to double

1328

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

classes of conjugacy. In Section 4 the polynomial f is supposed to be reducible. We construct
the Lagrange resolvent of f from the Lagrange resolvents of its factors following Theorem 1.
These latter, called multi-resolvents, may be computed in parallel. Section 5 applies the method
of Section 4 to the important case of irreducible (or reducible) polynomials over the rational
�eld. By computing a common denominator of such a polynomial f , we can assume that its
coe�cients are integers. Since the image of f modulo p is reducible for many prime integers
p , we can perform the computation of a Lagrange resolvent of f in Fp[x] by the above parallel
computation with multi-resolvents. The Lagrange resolvent of f in Z[x] is �nally lifted from
those in Fp[x] by using the Chinese Remainder Theorem. This multimodular method is clearly
�doubly� parallel since the Lagrange resolvents of f in Fp[x] are computed independently.
Finally, Section 6 is devoted to the parallel algorithm description.

Throughout this paper, k is a perfect �eld, k an algebraic closure of k , f a square-free
univariate polynomial of k[x] with degree n and α = (α1, . . . , αn) in k

n
is a tuple of the n

distinct roots of f .

General notation For a variety V ⊂ k
n
, the ideal Id(V) of V is the set of polynomials

with coe�cients in k vanishing on each element of V . Let I be an ideal of k[x1, . . . , xn] , the
algebraic variety V (I) of I is the set of point in kn where every polynomial in I vanishes.
The symmetric group of degree n is denoted by Sn . Given two ideals I and J , the injector
Inj(I, J) of I in J is the set of elements of Sn sending each element of I in J . The subset
StabSn(I) := Inj(I, I) of Sn is a group, called the stabilizer of I in Sn (in literature, it is
also called the decomposition group of I). For H < Sn and σ ∈ Sn , H

σ = σHσ−1 .

2 The Lagrange resolvent

The results not referenced or proved can be found in [5] where galoisian ideals are introduced.

The maximal ideal of α -relations M = Id(α) has as stabilizer

G = StabSn(M) ,

which is the Galois group of α in k .
By the natural k -morphism xi → αi from k[x1, . . . , xn] to k[α1, . . . , αn] = k(α1, . . . , αn) ,

the �eld k(α1, . . . , αn) of the roots of f is isomorphic to the quotient ring k[x1, . . . , xn]/M .
The goal of the constructive Galois theory is to construct M and to determine the Galois group
G . One of the methods, called GaloisIdeal algorithm(see [5]) is based on a construction of an
ascending chain

I1 ⊂ I2 ⊂ · · · ⊂M

of particular ideals called galoisian ideals, de�ned below. For the �rst ideal I1 , it is always
possible to take the ideal Id(Sn.α) , called the ideal of symmetric relations, which is generated
by the Cauchy moduli, a triangular Groebner basis obtained by divided di�erences from the
polynomial f . The resolvents have a double interest: construct a generator of Ii+1 from Ii
and simultaneously exclude some groups to be the Galois group of α by using the matrices of

1329

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

groups. More generally, the resolvents are intensively used in numeric and algebraic methods
for computing the Galois group alone.

Let us de�ne galoisian ideals and their injectors. Let L be a set of permutations of Sn

such that L = GL (i.e. G < L when L is a group). The ideal I of the variety L.α is called
a galoisian ideal, L is its injector in the galoisian ideal M ; the algebraic variety of I is
V (I) = L.α . Note that G is the injector of M in itself and M = Id(G.α) = Id(α) .

When the injector L of I in M is a group, the galoisian ideal I is said pure. A galoisian
ideal is pure if and only if L equals the stabilizer of I in Sn ; it is itself equivalent to the
inclusion of the Galois group G in this stabilizer. When I is pure V (I) = L.β for each
β ∈ V (I) . It is proved in [6] that a pure galoisian ideal is generated by a separable triangular
set of polynomials; such an ideal is said triangular.

De�nition 1 The L -relative resolvent of α by Θ ∈ k[x1, . . . , xn] is the polynomial

RΘ,L,α =
∏

Ψ∈L.Θ

(x−Ψ(α)) .

When I is pure, the resolvent does not depend on the choice of α in V (I) ; it thus can be
denoted by RΘ,I .

The characteristic polynomial of the multiplicative endomorphism Θ̂ induced by Θ in
k[x1, . . . , xn]/I is a power of the resolvent :

χΘ̂,I = R
card(H)
Θ,I (1)

where H < L is the stabilizer of Θ in L (Θ is called an L -relative H -invariant). By linear
algebra χΘ̂,I belongs to k[x] . As the �eld k is perfect, RΘ,I lies also in k[x] ; moreover, if it

is square-free then RΘ,I is the minimal polynomial of Θ̂ , the square-free form of χΘ̂,I .

In next section, we will apply Sentence 2 below to a subgroup K of L in order to compute
L -relative resolvents. For this reason, we prefer to use respectively K and J = Id(K.α) instead
of L and I = Id(L.α) in the rest of the present section.

Let K < Sn and τ ∈ Sn . Then we have

Id(Kτ−1

.(τ.α)) = τ−1.Id(K.α) . (2)

Indeed, for each τ ∈ Sn :

Id(τ−1Kτ.(τ.α)) = Id(Kτ.α) = τ−1.Id(K.α) .

Sentence 1 Let K < Sn , J = Id(K.α) and τ ∈ Sn . The galoisian ideal τ−1.J is pure with
stabilizer Kτ−1

if and only if G < K , where G is the Galois group of α .

Proof 1 The Galois group of τ.α is the conjugate Gτ−1
of G , and the condition Gτ−1

< Kτ−1

is equivalent to G < K . From Identity (2), the group Kτ−1
and τ.α de�ne the galoisian ideal

τ−1.J .
As Kτ−1

is a group, the galoisian ideal τ−1.J is pure with stabilizer Kτ−1
if and only if the

Galois group of τ.α is a subgroup of Kτ−1
(see [5]); this is equivalent to G < K .

1330

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Sentence 2 Let K < Sn , J = Id(K.α) and τ ∈ Sn . Assume that the Galois group G of α
is a subgroup of K . Then

RΘ,τ−1.J = Rτ.Θ,J .

Proof 2 The characteristic polynomial of Θ̂ in k[x1, . . . , xn]/τ−1.J is

χΘ̂,τ−1.J =
∏

σ∈Kτ−1

(x− σ.Θ(β))

for any β ∈ V (τ−1.J) since, by Lemma 1, the galoisian ideal τ−1.J is pure with stabilizer

Kτ−1
. Thus, for any β ∈ V (τ−1.J)

RΘ,τ−1.J =
∏

σ∈Kτ−1/Stab
Kτ
−1 (Θ)

(x− σ.Θ(β)) (3)

Moreover,

StabKτ−1 (Θ) = {σ ∈ τ−1Kτ | σ.Θ = Θ}
= τ−1{ρ ∈ K | τ−1ρτ.Θ = Θ}τ
= τ−1{ρ ∈ K | ρ.(τ.Θ) = τ.Θ}τ
= StabK(τ.Θ)τ

−1

(4)

We can choose β = τ.α ∈ V (τ−1.J) = Kτ−1
.(τ.α) (see Identity (2)). With the notations

ρ = τστ−1 and S = StabK(τ.Θ) , Identities (3) and (4) imply

RΘ,τ−1.J =
∏

ρ∈K/S

(x− τ−1ρτ.Θ(τ.α))

=
∏

ρ∈K/S

(x− ττ−1ρτ.Θ(α))

=
∏

ρ∈K/S

(x− ρ.(τ.Θ)(α)) (5)

= Rτ.Θ,J

Remark 1 From Identities (3) and (5), the following equality can be deduced more generaly
for any subgroup K of Sn :∏

σ∈Kτ−1/Sτ−1

(x− σ.Θ(β)) =
∏

ρ∈K/S

(x− ρ.(τ.Θ)(α)) (6)

for any β ∈ V (τ−1.J) where τ ∈ Sn and S = StabK(τ.Θ) .

1331

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

3 Double classes and resolvents

We are interested in computing the resolvent RΘ,I , where I is a pure galoisian ideal of stabilizer
L . We show how a resolvent can be factored relatively to a double transversal. This can lead
to decomposing the resolvent into a product of resolvents with smaller degrees, in particular
when the polynomial f is reducible.

Following the notations of previous section, H < L is the stabilizer of Θ in L . Let K be
another subgroup of L . The relation RK,H = R de�ned in L by

σR τ if σH ∩Kτ 6= ∅

is an equivalence relation. The class of σ is called a double class of L modulo K and H and
satis�es the following proposition:

Sentence 3 Let σ, τ ∈ L . Then σR τ if and only if τ ∈ K σH .

Let us assume that we know a double transversal

K\L/H = {τ1, . . . , τm}

of L modulo K and H , that is a set of representants of the equivalence classes of R . We
thus have

L.Θ =
m⋃
i=1

KτiH.Θ =
m⋃
i=1

Kτi.Θ .

In order to decompose each term of the above union, we introduce the subgroups

Hi := K ∩Hτi

of K for i ∈ [[1,m]] .

Lemma 1 Let τi ∈ L and Hi as above. If Θ is an L -relative H -invariant then τi.Θ is a
K -relative Hi -invariant.

Proof 3 For each permutation σ of Hi , there exists σ
′ in H such that

στi.Θ = τiσ
′τ−1
i τi.Θ = τi.Θ . (7)

Therefore τi.Θ is invariant under the action of Hi .
Now let σ ∈ K which leaves τi.Θ invariant. We show that σ belongs to Hi . From στi.Θ =

τi.Θ we deduce that Θ is invariant under the action of τ−1
i στi . Then τ−1

i στi ∈ H , in other
words σ ∈ τiHτ−1

i .

From Identity (7), we �nd by decomposing K according to a left transversal K/Hi of K :

Kτi.Θ = (K/Hi)Hiτi.Θ

= (K/Hi)τi.Θ . (8)

Lemma 1 ensures us that the set (K/Hi)τi.Θ has the same cardinality as the set K/Hi

(i.e. the produced polynomials are pairwise distinct). Indeed, if there exist two permutations σ
and σ′ of K such that στi.Θ = σ′τi.Θ then σ−1σ′ is in Hi because it leaves τi.Θ invariant.
Then σ and σ′ belong to the same left classe of K modulo Ki . Finally, we can write

1332

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Sentence 4 Let K\L/H = {τ1, . . . , τm} and Hi = K ∩ τiHτ−1
i for i ∈ [[1,m]] ; we have

L.Θ =
m⋃
i=1

(K/Hi)τi.Θ , (9)

where the union is disjoint.

Proof 4 Equality (9) follows from identities (7) and (8). Moreover, assume that there exists two
permutations σ and σ′ of K such that στi.Θ = σ′τj.Θ . Then στi ∈ σ′τjH and consequently
τi ∈ KτjH , that is contradictory with de�nition of the double transversal.

Sentence 5 Let H = Stab L(Θ) , K\L/H = {τ1, . . . , τm} , Ki = Kτ−1
i , Hi = K ∩ Hτi and

H ′i = Ki ∩H for i ∈ [[1,m]] . Then

RΘ,I =
m∏
i=1

∏
σ∈(K/Hi)

(x− στi.Θ(α)) (10)

=
m∏
i=1

∏
σ∈(Ki/H′i)

(x− σ.Θ(τi.α)) (11)

with Hi = StabK(τi.Θ) and H ′i = StabKi(Θ) for i ∈ [[1,m]] .

Proof 5 From Proposition 4, we express the resolvent as follows:

RΘ,I =
m∏
i=1

∏
Ψ∈(K/Hi)τi.Θ

(x−Ψ(α))

=
m∏
i=1

∏
σ∈(K/Hi)

(x− στi.Θ(α))

by Lemma 1. By the same lemma Hi = StabK(τi.Θ) and one can easily veri�es that H ′i =
StabKi(Θ) . Then Equality (11) follows from Remark 1.

The resolvent RΘ,I is algebraically computable by the algorithms in [6] or [7] based
on successive resultants when a triangular basis of I is given. Anyway their costs may be
dramatically reduced if it is possible to split the computation in several resolvents relative to
galoisian ideals with generators of smaller degrees. By the independance of these factors the
computation becomes parallelisable. Following these considerations an e�ective decomposition
of RΘ,I is given below.

Theorem 1 Let H = Stab L(Θ) and K\L/H = {τ1, . . . , τm} . If G < K and if a triangular
basis of J = Id(K.α) is given, then for each i ∈ [[1,m]] the resolvent RΘ,τ−1

i .J is computable
and

RΘ,I =
m∏
i=1

RΘ,τ−1
i .J =

m∏
i=1

Rτi.Θ,J . (12)

1333

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Proof 6 Let Ji = τ−1
i .J . If G < K then by Lemma 1, the ideals J and Ji are pure with

respective stabilizers K and Kτ−1
i . Therefore Sentence 2 and Relations (10) and (11) leads to

Identities (12). Furthermore RΘ,τ−1
i .J is computable since it is expressed as a resolvent relative

to J .

4 Case of reducible polynomials and application to Fp[x]
As the goal of this paper is to compute the resolvent RΘ,I by multimodular techniques when the
base �eld is Q , we will apply Theorem 1 to Fp[x] for f reducible over Fp . Consequently, in this
section the polynomial f is supposed to be reducible over k . In order to split the computation
of the resolvent RΘ,I we intend to determine a subgroup K of L containing the Galois group
G , and such that the triangular basis of the associated galoisian ideal J = Id(K.α) is quickly
computable.

Let f = f1 · · · fr , fi ∈ k[x] . For each i in [[1, r]] , we denote by di the degree of fi and by
Gi the Galois group (over k) of αi , a di -tuple of the di roots of fi .

It is well known that there exists a conjugate Gτ of the Galois group G , τ ∈ Sn , such
that Gτ < G1,...,r = G1× · · · ×Gr . For the the goal of the paper, it is su�cient to consider the
case where G1,...,r < Lτ . For σ = τ−1 , the group Gσ

1,...,r satis�es the following condition:

G < Gσ
1,...,r < L. (13)

We �rst show how a triangular basis of the ideal I ′ = Id(Gσ
1,...,r.α) can be obtained. Let

M1, . . . ,Mr be the r maximal galoisian ideals of the respective αi -relations. For each i ∈
[[1, r]] , we can rename the variables appearing in the triangular basis of Mi as a tuple yi , and
consider the ideal Mi in the ring k[yi] . In this context, let us denote by Ti(yi) a triangular
generating set of Mi .

Let T be the triangular set formed by the union of T1, . . . , Tr , and T ′ obtained by replacing
in T each variable yi,j by a variable xs such that this substitution is one-to-one (among the
set of variables yi,j and the set of variables xs) and such that the pure galoisian ideal I ′

generated by T ′ has Gσ
1,...,r as stabilizer.

Remark 2 To obtain T ′ easily, we compute the triangular set T ′′ resulting from the following
substitution in T :

y1,1 := x1, y1,2 := x2, . . . , yr,dr := xn ;
the set T ′′ is a triangular generating set of the galoisian ideal with G1,...,r as stabilizer (for a
good choice of the conjugate of each Gi). Therefore the known identities about galoisian ideals
give us:

T ′ = σ−1.T ′′ .

As G < Gσ
1,...,r any group K such that

Gσ
1,...,r < K < L (14)

1334

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

is a candidate for our goals, and the galoisian correspondance about ideals implies:

I = Id(L.α) ⊂ J = Id(K.α)

⊂ I ′ = Id(Gσ
1,...,r.α)

⊂ M = Id(G.α) .

Example 1 When K = Sd1 × . . . × Sdr the triangular basis of the ideal J is the union of
the triangular bases of the galoisian ideals of symmetric relations of the polynomials f1, . . . , fr ,
given respectively by the Cauchy moduli of fi (see [8]). If moreover L is the symmetric group
then we are in the particular situation studied by N. Rennert in [4] in order to compute absolute
resolvents ; in this case, T ′ = T ′′ (i.e. σ = id) and the condition (13) is satis�ed for σ = id .

To simplify the rest of this presentation, we assume without lost of generality that

G < G1,...,r < L

and that the n -tuple α of roots of f in V (I) is ordered as well: the di -tuple αi of roots of
fi stands after the roots of fi−1 and before the roots of fi+1 .

Let U1, . . . , Ur be r groups such that Gi < Ui < Sdi for i = 1, . . . , r and U1×. . .×Ur < L .
We can set

K = U1 × . . .× Ur .

The union of the triangular Groebner bases of the ideals Id(Ui.αi) forms a triangular basis of
J . Remark that this property has been already applied in order to describe the construction
of a triangular basis of the ideal I ′ .
Practically, we choose groups Ui as small as possible such that the computation of RΘ,K.α is
the fastest includind the cost of a triangular basis of Id(Ui.αi) .

Application to Fp[x]

The coe�cients of f belongs to Fp , where p is a prime integer. In this particular case, the
respective Galois groups Gi of fi are the cyclic groups Cdi of degree di . Denote by Mi the
(maximal) galoisian ideal of αi -relations. The variety of Mi is Cdi .αi . As the Galois group
is cyclic, the triangular basis of Mi can be computed easily from the irreducible factors of fi
in Fp[x]/ < fi > . Note that it is not necessary to factorise fi completely (see [3]). The best
choice is Ui = Cdi for i = 1, . . . , r . We have just to �nd σ ∈ Sn such that

K = (Cd1 × · · · × Cdr)σ < L. (15)

5 Computation by multimodular technique

Let f ∈ Z[x] be any polynomial of degree n with n distinct roots in C . We want to compute
R = RΘ,L,α for a group L containing the Galois group G of α .

Suppose that we computed the resolvent R modulo prime numbers p1, . . . , ps such that the
product p1 · · · ps is greater than the double of the maximal absolute value of the coe�cients of
R . Then the resolvent R is computable by the Chinese Remainder Theorem.

1335

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

In this section, we have to compute e�ciently R modulo some prime p and to establish a
bound on the coe�cients of R . In addition, we give a certi�cation to stop the algorithm before
the bound is reached.

Assume that the integer p does not divide the discriminant of f . Such an integer, called
unrami�ed, exists since f is square-free. Set ĝ = g mod p for any polynomial g . Recall the
essential following theorems:

Theorem 2 (Dedekind, [9]) Let f(x) ∈ Z[x] be a polynomial of degree n with n distinct
roots in C and let G be the Galois group of f over Q in Sn (i.e. for any α). If p is
unrami�ed and f̂ = f̂1 · · · f̂r with f̂i irreducible over Fp of degree di , then there exists τ ∈ G
with a cycle decomposition σ1 . . . σr with σi of length di .

The tuple (d1, . . . , dr) of Theorem 2 is called the cycle pattern of σ and the decomposition type
of f̂ .

Theorem 3 (Frobenius Density Theorem, [10]) Let (d1, . . . , dr) be a partition of n . Then, the
relative density of the set of primes p for which f modulo p has a given decomposition type
(d1, . . . , dr) exists and equals 1/|G| times the number of σ ∈ G with cycle pattern (d1, . . . , dr) .

Note that Frobenius Density Theorem is extended by Tchebotarev Density Theorem [11].

5.1 Computing R modulo p

In Fp[x] , the polynomial f̂ factorises into r irreducible factors as follows:

f̂ = f̂1 · · · f̂r

where deg(f̂i) = di . When r = 1 the prime integer p is �bad�' and we throw this integer.
Frobenius Density Theorem 3 shows the density of �good� primes.

Let Ĝi = Cdi be the Galois group over Fp[x] of a di -tuple α̂i of roots of fi , i ∈ [[1, r]] ,

and Ĝ be the Galois group of α̂ over Fp[x] ; α̂ can be chosen such that Ĝ < Ĝ1 × · · · × Ĝr .
As p is unrami�ed, for some σ ∈ Sn , by Dedekind Theorem 2, this inclusion follows:

(Ĝ)σ < (Ĝ1 × · · · × Ĝr)
σ < G < L .

We are exactly in the situation in which the computation by decomposition of the L -relative
resolvent of α̂ can be performed e�ciently (see Section 4).

5.2 Bounding the coe�cients of the resolvent RΘ,I

For the general case of relative resolvents, we just have to modify the Rennert's formulae ([4])
by replacing the symmetric group Sn , stabilizing the ideal of symmetric relations, by the group
L , stabilizing the galoisian ideal I . This leads to the following expression for a bound on the
coe�cients of f .

B(R) = (CΘ(Cf + 1))dDΘ

where Cg is the largest coe�cient of a polynomial g in Z[x1, . . . , xn] , Dg its total degree, and
d = deg(R) = [L : H] .

1336

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

5.3 E�cient probabilistic solution with certi�cation

Since the above bound may need approximatively [L : H]DΘ prime integers to obtain the
resolvent, a probabilistic approach is interesting to limit these necessary primes. Let us denote
by

R̂q = R mod q .

When q = p1 · · · pj , where p1 . . . , pj are prime numbers, the polynomial R̂
q can be lifted by the

Chinese Remainder Algorithm from the polynomials R̂pi . A classical way to obtain the resolvent
with high probability consists in returning R̂q as soon as R̂q = R̂q′ where q′ = p1 . . . , pj, pj+1 .

We actually use another test to stop the computation. In [12], the condition R(Θ) ∈ I is
exploited as a certi�cation for numerical computations of resolvents. Following this idea, even
though q is smaller than 2B(R) , we cut the computation when R̂q = 0 modulo I . As the
ideal I is triangular, this test is reduced to only n euclidean divisions in Q[x1, . . . , xn] .

6 The parallel algorithm

Let p be a prime number not dividing the discriminant of f . We denote by Kp the subgroup of

L chosen in order to construct the resolvent R̂p by means of the double transversal Kp\L/H .
The cardinality of this double transversal will be denoted by mp .

A total parallel computation of the multi-resolvent R̂p would require mp + 1 processors :
a principal processor and mp secondary processors to compute each resolvent in the product
of Theorem 1. For a given p , following Theorem 1, each branch computes a resolvent Rτi.Θ,J .
In practice, these computations of resolvents take always similar times. It seems impossible
to characterize a di�erent behaviour since the timings depend essentially on the respective
stabilisators of τi.Θ , which are pairwise conjugate groups. For instance, the method of [6]
computes the resolvent by successive resultants of the polynomial (x − τi.Θ) with respect to
the triangular Groebner basis of J ; there is no reason that this sequence of resultants leads
to signi�cant di�erent timings as we compute a resolvent by τi.Θ or by τj.Θ . However, we
cannot assure rigorously that the degree of parallelism is mp + 1 .

The di�culty of this algorithm is closely related with the two levels of parallelisation of the
method. When the lifting of the resolvent by Chinese remainder is based on s prime integers
p1, . . . , ps to obtain a certi�ed result, more than mp1 + . . .+mps processors are required for a
total parallelisation. In practice, this generally leads to a partial parallelisation, and it is not
easy to decide and handle the repartition of the processors with respect to the two di�erent
tasks. Since a solution may be lifted with high probability without the computation of every
R̂p1 , . . . , R̂ps , we naturally privilege the total computation of some resolvents R̂p . We suppose
that S + 1 processors proc(0), . . . ,proc(S) are available for the computation. The execution is
controled by the master processor proc(0).

Step 1 /* This step refers to Section 5 */
Processor proc(0)
1.1 Compute a list P of unrami�ed prime integers p1, . . . , ps such that p1 · · · ps > 2B(R) .
1.2 S0 := min{s, S} .

1337

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Step 2 /* This step refers to Section 4 */
For each processor proc(i), i=1 to S0 , do
2.1 Compute f̂pi
2.2 Factorise f̂pi in Fpi [x] into irreducible factors
Let r be the number of factors.
2.3 Deduce G1, . . . , Gr the respective Galois groups of each factor (the cyclic groups)
2.4 Compute Kpi (see Condition (15))
2.5 Compute a double transversal D of Kpi\L/H and mi := mpi

2.6 For j = 1, . . . , r compute the maximal ideals Mj (actually their triangular basis)
2.7 Compute the triangular basis of the ideal J associated to Kpi from the ideals Mj

2.8 Send pi, Kpi ,D, J,mi to the principal processor proc(0)

Step 3
/* This step refers to Section 5 for proc(S) and to Section 3 for the others.
Note 1: proc(S) is kept free for the computation of R by Chinese Remainder Theorem
Note 2: We estimate that the modular resolvents will be computed in similar times. */

Processor proc(0)

. Receive the above respective data from proc(1) to proc(S0) and stores them in a list `

. While (` is not empty) do

� Compute the largest integer u ∈ [[1, S0]] and the number S1 of processors such that

S1 = (m1 + 1) + . . .+ (mu + 1) < S

� Delegate the computation of the resolvents R̂pi (i ∈ [[1, u]]), to the u processors

proc(Ni) (1 6 i 6 u), where N1 = 1 and Ni = m1 + · · ·+mi−1 + i if i > 1

� Receive a boolean from proc(S) in the variable STOP

� If STOP=true Then Send a Signal to proc(i) (1 6 i 6 S − 1) ; Break ; End If

� Delete the u �rst elements of the list `

� End While

. If STOP=true Then Receive the resolvent R from proc(S) ; Return R ; End If

. Delete p1, . . . , pS0 in the list P / * see Step 1 */

. s := length (P)

. S0 := min{s, S − 1}

. Return to Step 2

Processors proc(j), 1 6 j 6 S1

/* When the S1 processors needed to obtain the modular resolvents receive the Signal from
proc(0) their computations are simultaneously stopped. */

. If j ∈ {N1, . . . , Nu} Then

� Distribute the computation on the mi processors proc(Ni + 1), . . . , proc(Ni+1 − 1) by

sending to them pi,Θ, Kpi , H, J and τ ∈ D , the double transversal with #D = mi

1338

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

� Wait to gather the results

� Compute the product of these results

� Send the product to proc(S)

. Else

� Receive pi,Θ, Kpi , H, J, τ from some proc(Ni)

� Perform the computation of RΘ,τ.J mod pi mentioned in Theorem 1

� Send RΘ,τ.J mod pi to proc(Ni)

. End If

Processor proc(S)
/* Note 1: this is actually repeated until the boolean variable STOP is set to true, meaning that
the algorithm lifted a value for R . As mentioned above, we reserved proc(S) for this task that
may be performed independently. Remark that proc(S) could be replaced by a set of processors
working by parallel to lift R .
Note 2: we introduce variables m and F that contain respectively the product of the primes
already taken into account and the current value of R̂m . */

. STOP := false

. Send STOP to proc(0)

. While not STOP do

� Receive p1, . . . , pu and R̂p1 , . . . , R̂pu from proc(0)

� Let m := mp1 · · · pu
� Compute R̂m from F and the R̂pi by Chinese Remainder Theorem

� F := R̂m

� If m > 2B(R) or F (Θ) ∈ I Then

STOP := True

End If

� Send STOP to proc(0)

� End While

. Send F to proc(0).

Conclusion and further developments

A part of this paper has been employed to establish Theorem 1 and to solve the problems
of its application. These problems did not appear in Rennert's paper for computing absolute
resolvents (see Exemple 1). It is important to note that our method is also more e�cient in his
context (L = Sn). Indeed, the group K in the decomposition

RΘ,I =
m∏
i=1

Rτi.Θ,J

1339

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

of the theorem where J = Id(K.α) , may be much smaller than the product of symmetric
groups involved in Rennert's paper. In particular, in our algorithm K is a product of cyclic
groups in the computation of the modular resolvents. Furthermore, in Rennert's paper the
parallel strategy of his algorithm is not described though his practical exemple is su�cient to
illustrate the interest of the methodology.

The modular computations have a double interest implying the double parallel character of
the method. Indeed, each modular resolvent is computed in parallel and Theorem 1 is applied
to compute in parallel factors of each modular resolvent. This doubly parallel character makes
the implementation rather technical. However it opens a �eld of investigations and development
of e�cient strategies on how to optimize the distribution of the work on the processors between
the di�erent parallelisations involved in Steps 2 and 3 of the algorithm.

The modular computation of a resolvent produces some useful informations :

• One can apply the standard technique to exclude some groups to be the Galois group
because each factorisation of f mod p (p an unrami�ed prime) gives a subgroup of the
Galois group of f (see Theorem 2).

• A partial factorisation of the resolvent Rpi on Fi[x] is a by-product of the algorithm; these
factorisations of modular resolvents could be memorized in view of a future factorisation
of the resolvent R on Z[x] that is useful for computing minimal polynomials of algebraic
numbers, the Galois group or galoisian ideals.

In some recent works, the double classes of groups have been exploited to study galoisian
ideals and resolvents. The theoritical results of the present paper show their importance. This
tool should probably leads to some future developments and understanding in Galois theory.

References

1. Lagrange J. R�e�exions sur la r�esolution alg�ebrique des �equations. Prussian Academy, 1770.

2. Galois E. Oeuvres Math�ematiques, �edit�ees par la SMF. Paris: Gauthier-Villars, 1897.

3. Valibouze A. Sur les relations entre les racines d'un polyn�ome//Acta Arithmetica. 2008. V.
131.1. P. 1-27.

4. Rennert N. A parallel multi-modular algorithm for computing Lagrange resolvents//J.
Symb. Comput. 2004. V. 37. N. 5. P. 547-556.

5. Valibouze A. �Etude des relations alg�ebriques entre les racines d'un polyn�ome d'une
variable//Bull. Belg. Math. Soc. Simon Stevin. 1999. V. 6. N. 4. P. 507-535.

6. Aubry P., Valibouze A. Using Galois ideals for computing relative resolvents//J. Symbolic
Comput. 2000. V. 30. N. 6. P. 635-651.

7. Aubry P., Valibouze A. Calcul alg�ebrique e�cace de r�esolvantes relatives. Archives HAL-
CNRS, 2009. URL: http://hal.archives-ouvertes.fr/hal-00406357/en/.

1340

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

8. Rennert N., Valibouze A. Calcul de r�esolvantes avec les modules de Cauchy//Experiment.
Math. 1999. V. 8. N. 4. P. 351-366.

9. Dedekind R. Sur la th�eorie des nombres entiers alg�ebriques. Paris:Gauthier-Villars, 1877.

10. Frobenius F.G. �Uber beziehungen zwischen den primidealen eines algebraischen k�orpers
und den substitutionen seiner gruppe//Sitzungsberichte der K�oniglich Preussischen
Akademie der Wissenschaften zu Berlin. Phys.-math. 1896. P. 689-703.

11. Chebotar�ev N.G. Opredelenie plotnosti sovokuponosti prostykh chisel, prnadlezhashchikh
zadannomu klassu podstanovok (determination of the density of the set of prime numbers
belonging to a given substitution class)//Izv. Ross. Akad. Nauk. 1923. V. 17. P. 205-250.

12. Abdeljaouad I., Bouazizi F., Valibouze A. Certi�cation alg�ebrique pour le calcul
de la r�esolvante de Lagrange. Archives HAL-CNRS, 2010. URL: http://hal.archives-
ouvertes.fr/hal-00483257/en/.

Accepted for edition 7.06.2010.

ÏÀÐÀËËÅËÜÍÎÅ ÂÛ×ÈÑËÅÍÈÅ ÐÅÇÎËÜÂÅÍÒ ËÀÃÐÀÍÆÀ Ñ
ÏÎÌÎÙÜÞ ÌÓËÜÒÈÐÅÇÎËÜÂÅÍÒ

c© Ôèëèïï Îáðè
Óíèâåðñèòåò Ïüåðà è Ìàðè Êþðè, Ïàðèæ, 75252, Ôðàíöèÿ, äîêòîð íàóê, ïðîôåññîð,

e-mail: Philippe.Aubry@upmc.fr

c© Àííèê Âàëèáóç
Óíèâåðñèòåò Ïüåðà è Ìàðè Êþðè, Ïàðèæ, 75252, Ôðàíöèÿ, äîêòîð íàóê, ïðîôåññîð,

e-mail: Annick.Valibouze@upmc.fr

Êëþ÷åâûå ñëîâà: ðåçîëüâåíòà Ëàãðàíæà; ãðóïïà Ãàëóà; èäåàë Ãàëóà; êîìïüþòåðíàÿ
àëãåáðà; ïàðàëëåëüíûå âû÷èñëåíèÿ.
Öåëüþ äàííîé ðàáîòû ÿâëÿåòñÿ ñîçäàíèå ïàðàëëåëüíîãî àëãîðèòìà âû÷èñëåíèÿ
ðåçîëüâåíòû Ëàãðàíæà äëÿ ïîëèíîìà îäíîé ïåðåìåííîé. Âû÷èñëåíèå ðåçîëüâåíòû
Ëàãðàíæà äëÿ ïîëèíîìà îäíîé ïåðåìåííîé âàæíî äëÿ òåîðèè Ãàëóà. Íà÷èíàÿ ñ
àëãîðèòìà Ëàãðàíæà, áûëî ïîëó÷åíî ìíîãî äðóãèõ ÷àñòíûõ ðåçîëüâåíò, íàçûâàå-
ìûõ àáñîëþòíûìè, ïî îñíîâíîé òåîðåìå î ñèììåòðè÷åñêèõ ôóíêöèÿõ. Àëãîðèòìîâ
äëÿ íå àáñîëþòíûõ ðåçîëüâåíò ìàëî è îíè ïîëó÷åíû íåäàâíî, òàê êàê îíè èñ-
ïîëüçóþò èäåàëû Ãàëóà, êîòîðûå áûëè ââåäåíû íåäàâíî. Ýòè àëãîðèòìû ñ ðîñòîì
ñòåïåíè ïîëèíîìà òðåáóþò áîëüøèõ çàòðàò âðåìåíè è ïàìÿòè. Ïîýòîìó òðåáóåòñÿ
ðàñïàðàëëåëèâàíèå. Â 2004 ãîäó N. Rennert ïðåäëîæèë ìîäóëÿðíûé àëãîðèòì äëÿ
âû÷èñëåíèÿ àáñîëþòíûõ ðåçîëüâåíò äëÿ öåëî÷èñëåííûõ ïîëèíîìîâ. Ìû ïîêàçûâà-
åì, ÷òî åãî òåõíèêà ìîæåò áûòü ïðèìåíåíà äëÿ ëþáûõ ðåçîëüâåíò. Òàêîé àëãîðèòì
åñòåñòâåííî ðàñïàðàëëåëèâàåòñÿ. Êðîìå òîãî, ìû ïðåäëàãàåì ôîðìóëó äëÿ ðàçëî-
æåíèÿ ðåçîëüâåíò, êîòîðàÿ äàåò äîïîëíèòåëüíîå ðàñïàðàëëåëèâàíèå. Òåì ñàìûì
ìû ïîëó÷àåì àëãîðèòì ñ äâóìÿ óðîâíÿìè ðàñïàðàëëåëèâàíèÿ.

1341

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

UDC 519.612

SOME ESTIMATIONS OF PERFORMANCE OF PARALLEL ALGORITHMS
FOR SOLVING LARGE LINEAR SYSTEMS OVER GF(2)

c© Mikhail Alekseevich Cherepniov
Moscow State University named after M.V. Lomonosov, Leninskiye gory, 1, Moscow, 119899,

Russia, Candidate of Physics and Mathematics, Associate Professor Numbers Theory
Department, e-mail: cherepniov@gmail.com

Key words: fast algorithms, sparce linear systems, parallel algorithms, computer algebra.
This topic explains how to estimate the running time and RAM volume required
by programs of Wiedemann-Coppersmith algorithm, Montgomery's algorithm, some
modi�cations of them and new algorithm when uploading multiple compute nodes and
some other details of these algorithms.

1 Introduction

In principle, each operation of any algorithm can be considered for possible use of several similar
sites to reduce time of their implementation. However, if the number of arithmetic operations
is �xed, the most signi�cant reduced time - this is where time falls proportional to the growing
of compute nodes' number. It will be that, for example, if you search relations in the methods
of the discrete logarithm or factorization problem based on the factor databases. However, for
most complex algorithms top rated time of their work T (N, n, d, c . . . ; s) depend on task and
used equipment parameters: N, n, d, c and the number of used compute nodes s and may
behave di�erently on di�erent areas of argument changing. Often when you increase s above
a certain threshold s0(N, n, d, c . . .) , depending on the task settings, time not only falls, but
begins to grow again. That is because time for exchange between s computing nodes grows
faster than of running time on each compute node separately reduce.

According to the author it is legitimately to raise the issue of calculating
of values s0(N, d, n, c . . .) , and T0(N, d, n, c . . .) = mins T (N, d, n, c . . . ; s) =
T (N, d, n, c . . . ; s0(N, d, n, c . . .)) for some model cluster. As a model it is logical today
to take the cluster with an unlimited number of compute nodes for which runtime of one
arithmetic operation with machine words, multiplied by the some constant c , equal to the
runtime of one machine word's passing between nods.

In modern computer network runtime of passing between the processor and RAM memory
have c ≈ 5 , and between the individual parts of RAM c ≈ 20 .

As known by author, option c is determined by the ratio between the frequencies of the
processor and "bus which links compute nodes, portion of information bits transferred on the
internal network communications and some other characteristics of the cluster. Let's also assume
that on a cluster there exists a possibility of direct delivery between performing speci�c job
computing nodes; and broadcast from �xed site to the sites of some group by binary tree, i.e.
by the logarithm of the number of elements of this group transfers. In this article, all the time
calculates in units equal to time per arithmetic operation with machine words in such model

1342

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

cluster. We assume that time for conversion of matrix formats and delay time for preparing
network is negligible.

The task will characterize by four parameters: N > 226 - size of the original matrix
(maximum number of rows and columns), d - upper bound of the number of nonzero elements
(units) in each row of this matrix, n - machine word length, c - parameter which was mentioned
above. However, if the volume of carriage, in bits, is V , while sending time will compute by
formula c

n
V units of time. One unit time is the time that takes one operation with machine

words in our model cluster.

2 Notes about symmetric matrixes

Let N,M ∈ N,F = GF (2) and we want to obtain solution of system of linear homogeneous
equations

DX = 0, D ∈ FM×N , X ∈ FN×n,M < N, (1)

where n � width of block, typically equals to machine word length (32 or 64).
At the beginning of Montgomery's algorithm, and new algorithm [1] select random block

Y ∈ FN×n and consider linear system

AX = B,A ∈ FN×N ;B = AY,X ∈ FN×n, (2)

where A = DTD ∈ FN×N is singular symmetric matrix. Note that any solution XD of the
system (1) allows you to build a XA - solution of the system (2) by the formula

XA = XD + Y.

Back, if XA - is a solution of system (2), than DTD(XA − Y) = 0 . If rangD = M , it
follows that D(XA − Y) = 0 . That is XA − Y - solution of the system (1).

Let dim1X is a dimension of the intersection of space 〈X〉 , formed by columns of block
X and the kernel of a linear operator D . Let dim2X is a dimension of the intersection of
the space, formed by columns of block X and the kernel of a linear operator A = DTD ,
and dim′2X - dimension of the intersection of space 〈X〉 and the kernel of a linear operator
A′ = DDT

Theorem 1 For arbitrary X ∈ FN×n

1. dim1X > dim2X − (M − rangD)

2. dim1D
TX > dim′2X − (M − rangD)

Proof.
1. In accordance with the size of the matrix D we have dimKerDT = M − rangD . By

de�nition, the vector X is in KerA if and only if it is in KerD or DX ∈ KerDT \ {0} . The
maximum number of linearly independent vectors that meet the second of these conditions is
not more than dimKerDT . So corang KerD in KerA not more than M − rangD . Crossing
with 〈X〉 we obtain inequality 1.

1343

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

2. The number of linearly independent vectors among columns of block DTX decrease
compared to the number of linearly independent vectors among columns of block X no more
than dimKerDT = M − rangD . So corang KerDT in KerA′ no more than M − rangD .
Crossing the 〈X〉 with KerA′ , we get con�rmation of 2.

The theorem is proved.
Note that according to the dimensions, matrix A in general have more linear independent

vectors in the core than matrix A′ . So we will prefer A .

Theorem 2 Let Krylov space 〈W 〉 built as a sum of 〈Wi〉, i = 0, 1, . . . ,m , with an initial unit
type W0 = B = AY , on the �rst m−1 of which A -scalar production is nonsingular. Let 〈Wm〉
- A -orthogonal to whole 〈W 〉 , in particular to itself. Let along with AWi, i = 0, 1, ...,m − 1,
also calculated AWm and X by the formula

X =
m−1∑
i=0

Wi(W
T
i AWi)

−1W T
i B, (3)

dim〈Wm〉 = µ > 0 . Then by not more than (n + µ − 1)(n + µ)N bitwise operations with
probability at least 1− 1

2n
(subject to statistical independence 〈Y 〉 and 〈W 〉) one can calculate

the solution of system (2).

Proof.
Note, that by condition the space 〈Wm〉 A -orthogonal to the space W = 〈W0〉+· · ·+〈Wm〉 ,

in particular A -orthogonal to itself. By the way, note that in practice dimension 〈Wm〉 is small
(say 2). Also by the the condition 〈Wm〉 contains all vectors from Krylov space that are A -
orthogonal to all this space. Then AWm have the form w0 + w1 + · · · + wm, wi ⊆ 〈Wi〉, i =
0, 1, 2, . . . ,m. When j ∈ {0, 1, . . . ,m− 1} we obtain a chain of equations

wj
TAWj = (w0 + · · ·+ wm)TAWj = (AWm)TAWj =

(Wm)TA(AWj) ⊆ (Wm)TAW = {0}

that, due to non singularity of A -scalar product at Wj shows that wj = 0 for j = 0, 1, . . . ,m−
1 , i.e. AWm ⊆ 〈Wm〉 .

If 〈AWm〉 6= 〈Wm〉 , the element from the kernel of the matrix A can be obtained by

reduction of right part of equality AWm = Z to triangular form by 2 (µ−1)µ
2

N operations (The
complexity of one elimination with columns of matrices AWm‖Wm, Z ∈ FN×(n+µ) estimated
with value N).

Now let 〈AWm〉 = 〈Wm〉 . From formula (3) we get by substitution

(Wj)
T (AX −B) = (Wj)

TB − (Wj)
TB = 0, j = 0, 1, ...,m− 1,

(Wm)T (AX −B) = (Wm)TA(AX −B) = 0,

because AX −B ⊆ W . Therefore, in view of the A -invariance of Krylov space

(Wj)
TA(AX −B) = (AWj)

T (AX −B) ⊆

W T (AX −B) = {0}, j = 0, 1, ...,m− 1,

1344

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

that is vector of the block AX−B are A -orthogonal to W , i.e. 〈AX−B〉 ⊆ 〈Wm〉 . It means
that linear operator A displays sum of spaces 〈X − Y 〉 + 〈Wm〉 in 〈Wm〉 . If 〈Y 〉 6⊆ 〈W 〉 ,
dimension of the �rst space is larger than the dimension of the second, and with the assistance
of the Gaussian exceptions in equality A(X − Y ‖Wm) = Z, 〈Z〉 ⊆ 〈Wm〉 , item from the kernel
of A can be found.

The probability that the 〈Y 〉 * 〈W 〉 subject to the statistical independence of these spaces
and singularity of matrix A , that leads to 〈W 〉 6= FN , obviously estimated by value 1 − 1

2n
,

where n - the number of columns in Y . The number of eliminations with columns of matrices
X−Y ‖Wm, Z ∈ FN×(n+µ) estimated with value 2((n+µ−1)+...+1) = 2 (n+µ)(n+µ−1)

2
. Theorem

is proven.
Note that condition W0 = B in the last theorem may be replaced by W0 = Y without

subject to statistical independence 〈Y 〉 and 〈W 〉 . Then similarly we obtain A(X−Y) ⊆ 〈Wm〉 ,
where by construction 〈X − Y 〉 ⊆ 〈W 〉 \ 〈Wm〉 .

3 Parallelization of �rst and third phases

Before discussing the wording of theorems, refer that consistent implementations of considered
algorithms picks up maximum time for repeatedly recurring operation of multiplying matrix
and block of vectors, this is the main part of the �rst and third phases of algorithms. Therefore,
parallelization must be primarily applied to this operation.

You can consider the two approaches to parallelization of multiplication matrix and block
of vectors related to distributed storage of the matrix and (or) distributed storage of the block.

The need to use the �rst of these approaches is also the impossibility of storing in memory
of one compute node all researched matrix D .

To use the second approach consider block of ns vectors. Namely, that all consider
algorithms apply to a system of linear equations DX = 0 , where D ∈ FM×N , X ∈ FN×ns . The
amount s called block factor. Let for simplicity M = N .

Consider the task of parallel distributed multiplication of sparse matrix on block.
To ensure balance load its need to separate sparse matrix into parts, containing

approximately the same number of units. Thus without additional transformation, matrix can
be separated in one direction - by ratios. Divide matrix D ∈ FN×N of our system of linear
homogeneous equations on horizontal strips by number l of used compute nodes. Thus processor
with number i will receive matrix Di , in which the nonzero left only N/l matrix rows of D .

In the �rst phase of Montgomery's and the new algorithm it is necessary to calculate
(DTD)iB , BT (DTD)iB,B ∈ FN×ns, i = 1, 2,

Have

DTD =
l∑

i=1

DT
i Di,

DTDBj =
l∑

i=1

DT
i DiBj, j = 1, . . . , s, (4)

where Bj ∈ FN×n - is j vertical strip of B ∈ FN×ns . Storage of this strips and matrix Di on
the compute node need memory

1345

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Nn+
nNd

l

bit (we assume that every non-zero matrix element Di have the row number and column
number in one machine word).

Thus distributed computation of block vector DTDB on ls compute nodes will require
N
l
d operations for calculate items DiBj and Nd

l
(number of nonzero elements in the matrix

Di
T) operations to complete the calculation DT

i DiBj ∈ FN×n .
Further, the algorithm consistently evaluated (DTD)kB . This requires sending with

addition by formula (4) and inverse mailing received left part of this equality for all l using
in its calculation computer nodes of computing site. Using the cyclic sending this takes time
c
n
2Nn = 2Nc.
To sum up, we get a time to calculate (DTD)B at ls compute nodes in the form

2Nd

l
+ 2Nc. (5)

Calculation of the total Krylov space needed in the new algorithm and in algorithm of
Wiedemann-Coppersmith, to build the solution. In addition to the �rst phase of the algorithms
vectors that constituents Krylov space uses for constructing coe�cients of series as scalar
products XTDiY for algorithm of Wiedemann-Coppersmith, and BT (DTD)iB for the new
algorithm.

For distributed by rows (strips) storage at l compute nodes total block BT even need Nns
l

bits. After computing the (DTD)iBj on each of the l compute nodes of group with number
j, 1 6 j 6 s, it calculates its part of scalar production BT (DTD)iBj by

3
Nns

l(log2
N
2
− log2log2

N
2

)

arithmetic operations (for corresponding algorithm one can see pp. 342-343 [4]). When N > 226

this fraction can be evaluated from the top by value

4Nns

l · log2N
. (6)

All parts after concatenation inside one group gives BT (DTD)iBj , and for all groups -
BT (DTD)iB . Sending time is the minor due to small size of sent matrices. Adding to the
evaluation (5) we obtain estimate of calculation time for the next block of vectors from Krylov
space and the coe�cient of the series on the cluster with sl computing nodes:

2dN

l
+

4Nns

l · log2N
+ 2Nc. (7)

To simplify the calculations we will use the value of l , that makes equal resulting
components:

l =
d

c
. (8)

A more detailed calculation shows that the second element in the estimation (7) when
considered in the present values of parameters, namely, 2ns < dlog2N less than the third. For

1346

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

large values of s it's better to do scalar multiplications on the additional O(s
log2N

) compute

nodes so that the second element of the evaluation (7) be less than the �rst and the third. So
let's use estimation

4Nc (9)

with overall estimation throughout the �rst phase of the 2N
ns

steps approximately

8N2c

ns
(10)

with condition sl 6 C or sd
c
6 C where C - general number of compute nodes of the cluster.

The memory of one node that participate in multiplication matrix on the block and
calculating coe�cients of the series, should have RAM space about

nNd
l

+ Nn + Nns
l

= Nn
8·109 (1 + c+ sc

d
)GB.

matrix Di; current Bj ; part of B
T

(11)

when l = d
c
. In the case of N ≈ 226 this is approximately

1

2
(1 + c+

sc

d
)GB. (12)

Note that if scalar multiplications calculates on another additional compute nodes, then
memory on a single node enough demand up

1 + c

2
GB.

For obtaining general evaluation of the �rst and the third phase of the new algorithm in
various applications, estimation (10) must be multiplied by a constant, not a great 2.

In the case of Widemann-Coppersmith algorithm rating for memory usage gives expression
(12). Estimate for running time may be obtain similar to (7), where there is no factor 2 neer
d , as there is no DT . So l will be determined by the formula

l =
d

2c
.

For the time of the �rst phase, contains the calculation of the 2N
ns

series coe�cients and
taking into account the need to build two passages (second to build the solution), we get very
close to the previous estimation:

16N2c

sn
. (13)

Note only that in the second pass of algorithm Widemann-Coppersmith, operation similar
to multiplication by BT replaced by right multiplying on a relatively small matrices gi that
requires equivalent time.

1347

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

4 Parallelization of the second phase

In the algorithm of Widemann in version of Coppersmith vector ḡ builds consistently increasing
its size. Giorgi P., Jannerod C-P., Villard G. in [3] proposed another option with almost linear
estimation of complexity, though with several logarithmic and rather big absolute multiplicative
constants. So optimized algorithm we will call algorithm of Widemann-Coppersmith with
matrix polynomial multiplication.

Let

h = h(λ) =
∞∑
i=0

Hiλ
i, Hi ∈ Fns×ns. (14)

Here the size of ns selected so that the algorithm can be apply to the construction of
approximation polynomial at the second stage of the algorithm Widemann-Coppersmith using
block factor s .

De�nition 1 Degree of vector polynomial m(λ) ∈ (F[λ])2ns×1 called its degree as a polynomial
with vector coe�cients from F2ns×1 .

De�nition 2 Order of vector polynomial m(λ) ∈ (F [λ])2ns×1 is a nonnegative integer j , that
satis�es h(λ)m(λ) =

∑
i>j+1 µiλ

i, µj+1 6= 0.

De�nition 3 σ -basis of the series h(λ) let's call matrix polynomial M(λ) ∈ F2ns×2ns[λ] that
satis�es the following conditions:

1. The columns M (i)(λ) of matrix M(λ) have an order of not less than σ .
2. Any v ∈ F2ns×1[λ] , whose order is not less than σ , have unique representation

v =
2ns∑
i=1

M (i)C(i), C(i) ∈ F[λ], degM (i) + degC(i) 6 degv.

To implement Widemann-Coppersmith algorithm, we must build Pade approximations to
series of the form (14), where Hi = XTDiY ;X, Y ∈ FN×ns , namely P (λ), Q(λ) ∈ Fns×2ns[λ] ,
that satis�es

(h ‖ Ins)
(
Q
P

)
= O(λ2d+1), degQ, degP 6 d, (15)

where Ins in concatenation is identity matrix from Fns×ns, d = N
ns
.

Let further for simplicity Nns = 2k .

Theorem 3 Let N > 226 . An upper bound for running time of parallel implementation using
block factor s of the second phase of the Wiedemann-Coppersmith algorithm with matrix
polynomial multiplication

1) When

s >
120(log2log232N)(log2

ns
2
− log2log2

ns
2

)

17n
(16)

has the form :

1348

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

1122Nn2s3(log232N)(log24N). (17)

2) When

s 6
120(log2log232N)(log2

ns
2
− log2log2

ns
2

)

17n
(18)

has the form :

15840Nns2(log232N)(log24N)(log2log232N). (19)

Remark 1 Because inequality z > 2Alog2A leads to z > Alog2z , we obtain that if s >
2120log2log232N

17n
log2

(
120log2log232N

34

)
, than inequality (16) holds.

Proof of 3.
To build the necessary approximation we use the algorithm from article [3], which builds

σ -bases, consistently doubling σ . According to this article we can built whole basis, when
replace series h(λ) to h(λ2ns)× (1, λ, λ2, . . . , λ2ns−1)T and construct approximation to it which
order is 2dns , using 2d coe�cients of series h(λ) . Estimation of running time of program of
corresponding algorithm C(ns, ns, 2dns) can be obtained from the proof of theorem 2.4 [3],
replacing d to 2dns , namely

C(ns, ns, 2dns) 6 2C(ns, ns, dns)+

MM(ns, dns) +MM(ns, 2dns),

where MM(a, b) -complexity of multiplying the two matrix polynomials with degree b from
Fa×a[λ] . Continuing similarly, obtain

C(ns, ns, 2dns) 6
MM(ns, 2dns) +

∑log22dns
i=1 MM(ns, 2−i2dns)(2i + 2i−1)

6 3
2

∑log22dns
i=0 2iMM(ns, 2−i2dns).

(20)

Remember, that for simplicity we demand Nns = 2k .
Optimized algorithm to multiply matrix polynomials may be taken from the article [5].

According to lemma 3.2 of this work obtain following estimation

MM(ns, 2i) 6 αQ
(ns)2

n
+ βQ

(ns)2 ns
n

log2
ns
2
− log2log2

ns
2

,

where Q : ϕ(rQ) > 2(2i + 1), H : 2H + 2 6 Q 6 2H+1 + 1, αQ 6 rQ2H((6r + 2)µr(H +
1) + 2α2

r2), βQ 6 rQ2Hβ2 , where as r any natural number other than 2 can be selected, µr -
sum of modules of the coe�cients in a cyclotomic polynomial with number r , α2 and β2

respectively is the number of additions and multiplications for multiplication polynomials with
degree ϕ(r2)−1 . It is known that when r = 3 one can choose β2 equals to 17 . Here we apply
trivial algorithm for addition of matrixes, broken by rows in machine words with the length of
n and optimized algorithm of multiplying such matrixes as set out above. When r = 3 we get
µr = 3 . Q can be chosen the lowest such that 3Q−1 > 2i + 1 (see. p. 8 [3]), so 3Q 6 9(2i + 1) ,
and when i > 1 we obtain 3Q 6 2i+4 , and because 3log32 < 2 , we have:

1349

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

MM(ns, 2i) 6
(ns)2

n
2i+4log32i+4·(

20 · 3(log2log32i+4 + 1) +
2

9
α2 +

17ns

log2
ns
2
− log2log2

ns
2

)

6
(ns)2

n

2i+5

3
(i+ 4)·(

60(log2
2(i+ 4)

3
+ 1) +

2

9
α2 +

17ns

log2
ns
2
− log2log2

ns
2

)
Because inequality

2

9
α2 + 60log2

4(i+ 4)

3
6 120log2log232dns

for i 6 log22dns obviously done, subject estimation can be continued by value

ns22dns11(log22dns+ 4)·(
120log2log232dns+ 17ns

log2
ns
2
−log2log2

ns
2

)
(21)

Thus

C(ns, ns, 2dns) 6
3
2
ns222 · 2dns(log22dns+ 4)log24dns·(

120log2log232dns+ 17ns
log2

ns
2
−log2log2

ns
2

)
6

66Nns2log232Nlog24N ·(
120log2log232N + 17ns

log2
ns
2
−log2log2

ns
2

)
(22)

In the case 1) this inequality can be continued by value

132Nns2(log232N)(log24N) · 17ns

log2
ns
2
− log2log2

ns
2

.

Since in this case, ns
2
> 16 , this evaluation can be continued by value

1122Nns2(log232N)(log24N).

Second case obviously follows from the evaluation (22). Theorem proven.

Theorem 4 Running time estimation of parallel implementations using block factor of
Wiedemann-Coppersmith algorithm with the matrix polynomial multiplication under condition
that N > 226 and

N >
71(log232N)(log24N)

cn
·(

240log2log232Nlog2(60
17n
log2log232N)

17

)4

1350

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

has the form

94N1+ 3
4n−

1
4 c

3
4 ((log232N)(log24N))

1
4 .

Proof.
Proof of this theorem follows from remark 1, theorem 3, 1) and evaluation (13) when

s =
1

4

(
8Nc

561n3(log232N)(log24N)

) 1
4

.

Note that when N > 226, c > 1 estimation of this theorem holds.

5 Conclusion

It's worth noting that in procedures (see [6]) using which 12 December 2009 was received
new record of integer factorization, actually applies the usual algorithm of Widemann in
Coppersmith version with s = 8 , but construction of approximations was not consistent,
but by binary tree as described above. Complexity of the corresponding algorithm proposed by
Thom é in the [7] estimates by value

O(n2s2(ns+ log2k)k · log2k · log2log2k), k =
N

ns
,

that is,

O(Nns(ns+ log2N)log2Nlog2log2N).

This estimate is very close to evaluation (22). In principle, the di�erence is that degree of

s is one less. Therefore, similar reasoning, when s = O(N
1
3) we can obtain time estimation of

the type

O(N1+ 2
3 (log2Nlog2log2N)

1
3).

It is important to note that the necessary memory volume in this case

O(k(ns)2log2k) = O(Nnslog2
2N

ns
)

bits, where multiplier log2k associated with increasing integer factors when the recursive
application of Fourier transform for polynomials with integer coe�cients (see, for example [8, 9])
is used. For values of parameters for which was done record calculations N ≈ 3 · 226, s = 8 , it's
around 1TB. With using optimal value of s this is O(N1+ 1

3nlog2N) that is really signi�cantly
much. An important advantage of algorithm [1] is the lack of need for multiplication of matrix
polynomials to calculate only few coe�cients such works. That leads to the good parallelization
and runtime approximation for the second phase about O(N) with the same asymptotic for
RAM volume (with constant in O equals approximately 3).

However, some optimizations of this algorithm allows quite remove requirement growing
RAM, and get an estimation of time of parallel implementations using block factor when N >
226, n = 64, 1 6 c of the whole algorithm of the type:

1351

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

8, 4c
2
3N1+ 2

3 (23)

in assessing the number of compute nodes asymptotically O(N
2
3

logN
) (when N ≈ 226, c ≈ 12, d ≈

29 number of required compute nodes is approximately 2400).

It is known that in usual parallel implementation of Montgomery's algorithm [2] the main
complexity gives sending time during multiplying a matrix by a vector (see estimation (5)).
You can assess that value by

N

n
(
c

n
2Nn) =

2cN2

n
.

As is known for the author, now there exist parallel implementations of Montgomery's algorithm
with better bounds. Attitude this time work to the optimal time for the new algorithm roughly
equal to 3. Increasing the size of the matrix N the attitude will be equal to

3
3

√
N

226
.

In addition, this algorithm have not "high parallelism" , i.e. its parts cannot be done on
independent clusters. The new algorithm and algorithm of Wiedemann-Coppersmith allow you
to compute the coe�cients of series and its approximations on the independent sites.

Note ones more feature of Widemann-Coppersmith algorithm and the new algorithm. When
you use block factor s , running time of the �rst and third phases can be reduced to s , running
time of the second phase increases depending on s not slower than s2 . For example, the
complexity of multiplying two matrices from GF (2) with size ns× ns , as we saw above, have

the estimate n2s3 . At the same time, if this matrix divide to the blocks with the size ns
2
3 ×ns 2

3

and send each pair of such blocks from di�erent matrices for multiplication on an execution site,
while time on sending and arithmetic operations will be about O(n2s2) , and the number of

used compute nodes O(s
4
3) . Similar considerations can be done fore the parallelization of scalar

production of vectors. Solving of homogeneous systems (bring to the triangular form) can be
made using a recursive algorithm that transfers calculations again to a matrix multiplication.
Such parallelization leads to overall estimate of the form

O(
N2

s
) +O(Ns),

that for s = O(
√
N) leads to O(N

3
2) . The total number of compute nodes 2sl (see. (8)) will

be about O(N/logN) .

We gather results in the table:

1352

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Running time Nodes Total RAM
Wiedemann-
Coppersmith

with matrix 94N1+ 3
4n−

1
4 c

3
4 ((log232N)(log24N))

1
4 O

(
N

1
2

(log2N)2

)
O(N1+ 1

4)

polynomial
multiplication
Wiedemann-

Coppersmith- O(N1+ 2
3 (log2Nlog2log2N)

1
3) O(N

2
3

log2N
) O(N1+ 1

3 log2N)

Thomé
Montgomery
(1995) 2c

n
N2 O(1) O(N)

New

algorithm 8, 4c
2
3N1+ 2

3 O(N
2
3

log2N
) O(N1+ 1

3)

References

1. Cherepnev M.A. Block Lanczos-type algorithm for solving sparse linear systems //Diskr.
Math. (in Russian). 2008. V. 20. N. 1. P. 145-150.

2. Montgomery P.L. A Block Lanczos Algorithm for Finding Dependencies over
GF(2)//EUROCRYPT'95, LNCS, 1995. V. 921. P. 106-120.

3. Giorgi P., Jannerod C-P., Villard G. On Complexity of Polynomial Matrix
Computations//ISSAC'03, August 3-6, 2003. Philadelphia, USA.

4. Coppersmith D. Solving Homogeneous Linear Equations Over GF(2) via Block Wiedemann
Algorithm//Mathematics of Computation. Jan. 1994. V. 62. N. 205. P. 333-350.

5. Cantor D., Kaltofen E. On Fast Multiplication of Polynomials Over Arbitrary
Algebras//Acta Informatica.1991. V. 28. P. 693-701.

6. Kleinjung T., Lenstra A.K., and others Factorization of a 768-bit RSA modulus. version
1.0. January 7, 2010. URL: http://eprint.iacr.org/2010/006.pdf.

7. Thom�e E. Subquadratic computation of vector generating polynomials and improvement
of the block Wiedemann algorithm//J. of Symbolic Computation. 2002. V. 33. Issue 5. P.
757-775.

8. Vasilenko O.N. Number-Theoretic Algorithms in Cryptography //AMS. Moscow State
University, 2007.

9. Naudin P., Quitte C. Algorritmique Algebrique. Masson, 1992.

Accepted for publication 7.06.2010.

1353

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

ÍÅÊÎÒÎÐÛÅ ÎÖÅÍÊÈ ÏÐÎÈÇÂÎÄÈÒÅËÜÍÎÑÒÈ ÏÀÐÀËËÅËÜÍÛÕ
ÀËÃÎÐÈÒÌÎÂ ÐÅØÅÍÈß ÁÎËÜØÈÕ ËÈÍÅÉÍÛÕ ÑÈÑÒÅÌ ÍÀÄ

GF (2)

c© Ìèõàèë Àëåêñååâè÷ ×åðåïíåâ
Ìîñêîâñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò èì. Ì.Â. Ëîìîíîñîâà, Ëåíèíñêèå ãîðû, 1,

Ìîñêâà, 119899, Ðîññèÿ, êàíäèäàò ôèçèêî-ìàòåìàòè÷åñêèõ íàóê, äîöåíò êàôåäðû òåîðèè
÷èñåë, e-mail: cherepniov@gmail.com

Êëþ÷åâûå ñëîâà: ðàçðåæåííûå ñèñòåìû; ôàêòîðèçàöèÿ öåëûõ ÷èñåë; ïàðàëëåëüíûå
àëãîðèòìû; êîìïüþòåðíàÿ àëãåáðà.
Â äàííîé ðàáîòå äàíû îöåíêè âðåìåíè, ïàìÿòè ïðè îïòèìàëüíîì ÷èñëå óçëîâ äëÿ
èçâåñòíûõ áëî÷íûõ àëãîðèòìîâ ðåøåíèÿ ðàçðåæåííûõ ñèñòåì íàä GF (2) , èõ ìî-
äèôèêàöèé è íîâîãî àëãîðèòìà.

UDK 519.688

DFT FOR POLYNOMIALS IN PARALLEL ALGORITHMS

c© Aleksey Olegovich Lapaev
Tambov State University named after G.R. Derzhavin, Internatsionalnaya, 33, Tambov,

392000, Russia, Post-graduate Student of Computer and Mathematical Modeling Department,
e-mail: alapaev@gmail.com

Key words: polynomials; discrete Fourier transform; parallel algorithm; method of
homomorphic images; cluster.
We investigate sequential and parallel algorithms for polynomial arithmetic based
on discrete Fourier transform (DFT). Algorithms for polynomial multiplication are
discussed. Sequential algorithms for polynomial matrix are proposed. Each algorithm
based on DFT has been compared with similar algorithm based on Chinese remainder
theorem. In the last part of work parallel algorithms for calculation DFT and
multivariable polynomials multiplication are considered. Theoretical expressions of
complexity are presented for each algorithm. Results of experiments on MVS cluster
are presented for parallel algorithms.

1354

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

1 Introduction

E�ective implementation of arithmetics for multivariable polynomials is a signi�cant problem in
symbolic computations. This problem is important for calculations with polynomial matrices.
During calculations polynomials of high degrees are appearing. Therefore, standard algorithmes
are non-e�ective. Modular methods are used to reduce cost of polynomial coe�cient and degree
growth. Let's remind Chinese remainder theorem (CRT). It is usually used by next scheme:
elements of polynomial matrices are mapped into �nite �elds Zp[x]�(x− j)Zp[x], Zp = Z/pZ ,
where p is some prime number. Then calculations are ful�lled over this �nite �elds. Result is
recovered via Newton's or Lagrange's scheme. Complexity of interpolating of one polynomial
is O(t2 + tr2) , where t and r are the numbers of used polynomial and numerical modules
respectively.

It has been shown in works [10, 11] that algorithms based on discrete Fourier transform are
more e�ective at interpolating result instead of CRT for polynomial modules. The main idea
of calculations based on DFT is that under mapping in factor ring Zp[x]�(x− j)Zp[x] values
of parameter j are chosen in a special way. It allows to recover result in Zp[x] by DFT and
CRT in time O(t log2 t+ tr2) where t � the number of points in DFT, r � the number of the
numerical modules. Coe�cients of polynomials are also recovered by CRT.

In paper [1] the algorithm for multiplication of two polynomials based on DFT in a �nite �eld
Zp[x] is described. Theoretical and experimental comparison of DFT-algorithm of polynomials
multiplication with Karatsuba's algorithm of multiplication [12] and direct algorithm is resulted
in works [7,12]. The problem of multiplication of two polynomials based on DFT on the processor
with several kernels and the general memory is considered in articles [2,3].

Comparison of two classes algorithms for polynomial calculations is done in the given work:
the �rst class of algorithms uses CRT both for polynomial and for the numerical modules. The
second class of algorithms uses DFT instead of CRT for polynomial modules.

In section 2 theoretical and experimental comparison of algorithms of polynomial multiplication
of one variable is spent.

In section 3 DFT-algorithm for calculation of a determinant, the characteristic polynomial,
the adjoint matrix for the matrices which elements are polynomials of one variable over a
ring of integers are considered. The problem of multiplication of two polynomial matrices
is considered. For each algorithm theoretical and experimental comparison with the CRT-
algorithm is resulted. Alogrithm based on DFT are suggested by author.

In section 4 the algorithm of calculation of DFT for multivariable polynomials is considered,
complexity estimations are shown. The parallel algorithm of multidimensional DFT calculation
is proposed by author. Results of experiments on cluster MVS are presented.

In section 5 the parallel algorithm of multivariable polynomial multiplication based on
DFT on parallel machines with the distributed memory is considered. Parallezation scheme of
algorithm has been made by the authors.

All experiments are done on MVS cluster with the next con�guration: 1460 computing
modules with 8 cores Intel Xeon 3 GHz and 8Gb RAM by module, operation system is Cent
OS. All algorithmes were implemented in Java 1.6. MPIJava binding for MPICH is used for
parallel algorithms.

1355

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

2 Algorithms of multiplication of polynomials

of one variable in Z-ring

It has been shown In work [1,7,12] that multiplication of polynomials based on DFT has the
complexity estimation O(m log2m) , where m is the degree of polynomials. Let's consider the
following algorithm for computing product of two polynomials f, g ∈ Z[x] based on DFT (PF):

1. Choose the number of numerical prime modules r , p0, . . . , pr−1 , su�cient for recovering
of fg in Z .

2. Calculate DFT F (f), F (g) for polynomials f and g in each �nite �eld Zpi ,
i = 0, . . . , r − 1 .

3. Calculate F (f) ·F (g) in each �nite �eld Zpi , ß = 0, . . . , r− 1 , where ” · ” - operation of
element-wise multiplication of two vectors.

4. Calculate the inverse DFT for vector F (f) ·F (g) in each �nite �eld Zpi , ß = 0, . . . , r−1 .
Elements of this vector are polynomial's coe�cients fg over the module pi

5. Reconstruct polynomial coe�cients fg in Z by CRT.

At the given algorithm following mappings in various algebras take place:

Z[x]→ Zp[x]→F F (Zp[x])→F−1

Zp[x]→ Z[x]

Let's receive theoretical expressions for complexity of last algorithm. Let f and g be a
polynomials in Z[x] with degrees m− 1 , each coe�cient occupies w machine words. Product
degree fg is 2m − 2 . The maximum by absolute value coe�cient of product of polynomials
fg contain no more than r = dloghm + 2we words, where h = 2H , H - number of bits in a
machine word.

Let's choose as modules prime numbers, each consists of H bits.
Then r is the number of prime modules p0, . . . , pr−1 which is enough for recovering the

result from Zpi [x] to Z[x] via modular a method according to the Chinese remainder theorem
(CRT). Here it is designated Zpi = Z/piZ .

As product degree fg is equal 2m− 2 , the number of points for DFT is N = 2dlog2(2m−1)e .
Let f̂ = FN

pi
(f) and F̂N

pi
(f̂) - N -dimensional vectors of direct and inverse discrete Fourier

transforms for a polynomial f in the �eld Zpi on N points. Here f is considered as a vector
of polynomial's coe�cients. It is possible to show that for any f it is carried out

Nf = F̂N
pi

(FN
pi

(f)),

Then product of polynomials f and g in the �eld Zpi is calculated by the formula

F̂N
pi

(FN
pi

(f) · FN
pi

(g))/N, (∗)

where operation " · " designates multiplication of two vectors of length N in terms Vi = Wi ·Ui .
Let's result separately each step of algorithm and number of operations on the step.

a) We calculate remainders of division polynomials f and g by pi,
i = 0, . . . , r − 1 . It takes to execute 2m divisions of numbers of length (w) on numbers of
length (1) . It is required 2mrw divisions and 2mrw subtractions.

1356

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

b) We calculate DFT for polynomials f and g in Zpi [x]
i = 0, . . . , r − 1 Calculation of DFT is carried out by algorithm Cooley-Tukey [7] on N =
2dlog2(2m−1)e points. Then the number of operations of addition, multiplication and division are
the same and equal to 2Nr log2N .
c) Element-wise multiplication of DFT-images of polynomials f and g in each �eld Zpi . Thus
it is required rN operations of multiplication and as much division operations.
d) We calculate the inverse Fourier transform in each �eld Zpi . For this purpose it is required
to perform rN log2N operations of addition, multiplication and division.
e) We recover the result coe�cients by CRT. For this recovery it is required to ful�ll 2r2(2m−1)
addition and multiplication operations.

Let's compare the considered algorithm and the following:
0. Standard algorithm of multiplication for numbers and polynomials (PSS).
1. Karatsuba's algorithm for multiplication of numbers and standard algorithm for multiplication
of polynomials (PSK).
2. Standard algorithm for multiplication of numbers and Karatsuba's algorithm for multiplication
of polynomials (PKS).
3. Karatsuba's algorithm for multiplication both numbers and polynomials (PKK).

Let's result theoretical estimations of algorithms [12]. We get the number of operations of
addition - A , multiplication - M and divisions - D .

Table 1
Number of additions, multiplications and divisions at multiplication of dense polynomials for

algorithms 0-4

0 A m2w2

PSS M m2(w2 + 2w)

1 A 10m2(wlog2 3 − w)
PSK M m2wlog2 3

2 A w2(10mlog2 3 − 14m+ 4)
PKS M mlog2 3w2

3 A w(10mlog2 3 − 14m+ 4) + (mw)log2 3

PKK M (mw)log2 3

4 A 2mrw + 3Nr log2N + 2r2(2m− 1)
PF M 3Nr log2N + rN + 2r2(2m− 1)

D 2mrw + 3rN log2N + rN

It is clear from Table 1 that the best algorithm by degree of polynomials is algorithm PF.
The best algorithm by the number of words w in coe�cients of polynomials are the algorithms
based on Karatsuba's scheme for number multiplication.

2.1 Experimental comparison of algorithms

Programs have been written and experiments for measuring time of execution for algorithms
of polynomial multiplication with corresponding parameters m and w are done.

Results are presented in tables below.
It is possible to choose for each set of parameters m and w algorithm which spends the

least time for multiplication of two polynomials by comparison the tables listed above. Besides,
let's �nd the relation of the time spent with algorithm PSS, to åðó time spent with the most
fast algorithm. Results are presented in Table 3.

1357

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Table 2
Results of experiments with multiplication of polynomials of one variable in a ring of integers

m 4 16 64 256 1024 4096 16384

PSS

w = 4 0.008 0.235 5.9 103 1550 20930 292020
w = 16 0.05 1.325 26.5 425 6720 101970 1.58·106

w = 64 0.68 17.25 305 5060 80740 1.3·106 21·106

PSK

w = 4 0.009 0.26 6.4 109 1550 21770 319440
w = 16 0.05 1.3 25 415 6480 99700 1,6·106

w = 64 0.66 19.75 330 5430 78730 1213330 19.3·106

PKS

w = 4 0.022 0.39 5 55 300 3600 28240
w = 16 0.057 0.85 10.1 102 870 6940 59040
w = 64 0.56 6.8 68 590 5360 47420 42679

PKK

w = 4 0.023 0.4 5.2 57 510 3690 29830
w = 16 0.057 0.84 10.1 104 880 6990 59670
w = 64 0.55 11.2 90 720 5680 48040 513630

PF

w = 4 0.33 1.575 7.8 34.5 145 670 2510
w = 16 1.9 9.6 41 175 730 2910 12200
w = 64 20. 88 360 1450 5890 24130 100140

Table 3
Numbers of algorithms of multiplication of dense polynomials which have shown in

experiments the least time for the data m and w and their gain in time in relation to
standard algorithm

m w = 4 w = 16 w = 64

4 0/1 0/1 1/1.03

16 0/1 2/1.53 2/2.53

64 2/1.18 2/2.48 2/4.85

256 4/2.99 2/4.06 2/8.58

1024 4/10.69 4/8.87 2/14.69

4096 4/31.24 4/35.04 4/53.24

16384 4/116.34 4/129.94 4/204.84

The table 3 can be compared with theoretical estimations of complexity resulted in Table
1. For this purpose we construct Table 4 on expressions of complexity for the same sets of
parameters m and w .

1358

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Table 4
Numbers of the best algorithms by theory for multiplication of dense polynomials and their

prize concerning standard algorithm

m w = 4 w = 16 w = 64

4 2/1.5 2/1.7 3/1.9

16 2/2.1 2/2.7 3/3.4

64 2/3.3 2/4.7 3/5.9

256 2/5.7 2/8.2 3/10.4

1024 2/10.0 2/14.5 4/20.4

4096 2/17.6 4/43.9 4/78.2

16384 4/61.8 4/160.4 4/300.0

From comparison of these two tables it is clear that theoretical expressions for complexity
of the algorithms well enough correspond with times are received during experiments. Average
relative error makes 35.86 %.

Distinctions in a prize are connected by that theoretical estimations consider only operations
of addition, multiplication and division, laying aside all other operations.

3 DFT in consecutive matrix algorithms

3.1 Matrix multiplication

Let's consider a problem of multiplication of two matrices over a ring of polynomials of one
variable. Let's result two algorithms of matrix multiplication over a ring of polynomials of one
variable and receive expressions of their complexity:

0. Modular algorithm of matrix multiplication, using CRT both for polynomials, and for
their coe�cients (MCC).

1. Modular algorithm of matrix multiplication, using fast Fourier transform for polynomials
and CRT for their coe�cients (MFC).

In algorithm MFC the new way of application of discrete transformation of Fourier is used.
For each element of multiplied matrices it is calculated homomorphic DFT-image, and further
calculations on algorithm are made with these images. The result is recovered at �rst by inverse
DFT and then by CRT after the end of calculations.

Let matrices A,B ∈ Mn×n[Z[x]] . Let maximum on the coe�cients absolute value of
polynomials which are elements of matrices A and B , contain wA and wB words accordingly.
The maximum degrees of elements of matrices A and B it is less mA and mB . We get
m = min{mA,mB} . Then the maximum coe�cient of product contains r = dwA + wB +
loghm + logh ne words, h = 2H . Having assumed that in CRT for numbers are used H -bit
prime modules, r is an enough number of modules, su�cient for result recovering.

The maximum degree of polynomials which appear in product A · B is less then mAB =
mA +mB − 1 .

Let's take polynomial modules of the �rst degree. In algorithm MCC it is necessary to take
mAB prime polynomial modules x, x−1, x−2, . . . , x−mAB+1 . In algorithm MFC it is required
to calculate DFT for each element of matrices A and B on N = = 2dlog2 mABe points. It is
known from work [7] that with use of N points, DFT in a prime �eld can be calculated for
N log2N operations of addition and as much multiplication and division operations.

1359

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

At re�ection in the �eld Zpi [x] remainders of division by prime numbers p0, . . . , pr−1 are
calculated. Thus, it is required to execute n2rmAwA and n2rmBwB divisions and as much
subtractions for matrices A and B accordingly. For refelection to homomorphic images in
Zpi [x]j = Zpi [x]�(x − j)Zpi [x],æ = 0.mAB − 1 , it is necessary to calculate a polynomial
remainders of division on the prime modules (x− j) in the �eld Zpi [x] . For this purpose it is
required n2rmABmA and n2rmABmB operations of multiplication, addition and division for
matrices A and B accordingly.

For multiplication of matrices we use standard algorithm. Then the number of ring
operations in Z[x] is n3 operations of multiplication and n3 addition operations.

Complexity of addition of two polynomials is rmAB additions and rmAB divisions at
calculations on algorithm MCC . Complexity of multiplication of two polynomials makes rmAB

multiplications and as much divisions.
Complexity of addition of two polynomials is rN additions and as much divisions at

calculations on algorithm MFC . Complexity of multiplication of two polynomials makes rN
multiplications and rN divisions.

It is necessary to recover n2 polynomials. It is required m2
ABr multiplications and twice

as much additions for recovery of one polynomial from Zpi [x]j to Zpi [x] . As addition and
multiplication are carried out by the prime module pi it is required also 3m2

AB divisions.
It is required r2mAB multiplications and twice more additions for restoration of factors of a
polynomial in Z[x] .

Let's result the number of additions A , multiplications M and divisions D for algorithms
MCC and MFC.

Table 5
The functions are expressing the number of operations of addition, multiplication and division

for algorithms MCC and MFC

0 A n2r(mAwA +mBwB +mABmA+
+mABmB) + n3rmAB+
+n2(2m2

ABr + 2r2mAB)
MCC M n2r(mABmA +mABmB) + n3rmAB+

+n2(2m2
ABr + r2mAB)

D n2r(mAwA +mBwB +mABmA+
+mABmB) + 2n3rmAB + 3n2r2mAB

1 A n2r(mAwA +mBwB + 2N log2N)+
+n3rN + n2(rN log2N + 2r2mAB)

MFC M 2n2rN log2N + n3rN+
+n2(rN log2N + 2r2mAB)

D n2r(mAwA +mBwB + 2N log2N)+
+2n3rN + n2rN log2N

3.2 Experimental comparison of algorithms MCC and MFC

Programs have been written and experiments in which and MFC time of performance of
algorithms MCC was measured in milliseconds for parameters m,n,w are made.

Let's consider that the matrix has the size n , density α which elements are degree
polynomials m with the factors consisting from w of machine words, has type (n,m, α, w) .

Let's result the relation of time of performance of algorithm MCC to time of performance
of algorithm MFC:

1360

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Table 6

The relation of time of performance of algorithm MCC to algorithm MFC at multiplication of
matrices of type (n,m, 100, w) by results of experimental comparison

w=8

m n=4 n=8 n=16 n=32 n=64

4 2.01 1.77 1.6 1.23 1.04

8 3.49 3.05 2.22 1.48 1.15

16 5.61 3.99 2.99 1.84 �

32 7.71 5.85 3.43 1.82 �

64 11.74 6.65 � � �

128 13.91 7.95 � � �

w=16

m n=4 n=8 n=16 n=32 n=64

4 2.51 2.31 2.0 1.71 �

8 3.99 3.49 2.86 2.42 �

16 5.73 4.63 3.78 3.04 �

32 8.01 6.03 4.57 � �

For some m,n,w values of the functions expressing complexity of algorithms MCC and
MFC (Tab. 5) have been calculated. The theoretical prize of algorithm MFC rather MCC is
presented to Table 7.

Table 7

The relation of the number of arithmetic operations of algorithm MCC to the number of
arithmetic operations of algorithm MFC for type matrixes (n,m, 100, w) by results of

theoretical comparison

w = 8

m n = 4 n = 8 n = 16 n = 32 n = 64

4 2.33 2.14 1.87 1.58 1.32

8 2.52 2.33 2.06 1.75 1.46

16 2.94 2.73 2.41 2.03 1.66

32 3.84 3.55 3.12 2.58 2.05

64 5.63 5.2 4.53 3.68 2.8

128 9.09 8.38 7.27 5.83 4.3

w = 16

m n = 4 n = 8 n = 16 n = 32 n = 64

4 2.81 2.63 2.35 1.99 1.63

8 2.94 2.77 2.5 2.14 1.77

16 3.23 3.05 2.76 2.37 1.95

32 3.88 3.66 3.31 2.82 2.28

By comparison of two last tables it is clear that theoretical and experimental estimations
well correspond to themselves. The average relative distinction is equal to 24.37 %.

1361

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

3.3 Algorithms of calculation of a determinant, a characteristic

polynomial and the adjoint matrix

Let's receive theoretical expressions of complexity for algorithms of calculation of a determinant,
a characteristic polynomial and the adjoint matrix for a matrix over polynomials of one variable.

Let A = (aij(x)) be a matrix over a ring Z[x] the size n × n , aij(x) =

sij−1∑
k=0

akijx
k . Let

max
i,j,k
|akij| 6 α and deg aij < s .

Complexity of calculation of discrete Fourier transform on algorithm for n2 polynomials on
N = 2dlog2 nse points at use r modules is equal

n2r(7sdlogh αe+ 9N log2N).

3.3.1 Determinant calculation

Let's apply algorithm of a forward stroke to calculation of a determinant of a matrix. Let's
estimate the number of prime 32-bit modules r , su�cient for determinant reception on its
image at discrete Fourier transform. The matrix determinant detA can be calculated by the
formula:

detA =
∑

(j1,...,jn)

(−1)ta1j1a2j2 . . . anjn , (1)

where (j1, . . . , jn) - transposition of numbers from 1 to n , t - signum of this transposition.
The formula (1) contains exactly n! composes. Having estimated the maximum coe�ceint

of detA and having taken advantage of the Stirling's formula for the top estimation of value
n! , we receive that the number of prime modules r be equal

r = dlogh 2(
√

2πn
(n
e

)n
e

1
12n sn−1αn)e,

where h = 232.
Each ring operation over images of polynomials consists from rN arithmetic operations

over words and rN calculations of a remainder of division. We consider that calculation of
a remainder of division occupies as much time, as 7 additions of words. Then the number of
arithmetic operations over images of polynomials of an matrix A using the algorithm of a
forward stroke equally

8n3rN.

For polynomial recovering from it's image it is necessary to execute r inverse DFTs and
interpolate ns numbers. Thus, the number of operations for polynomial recovering from it's
image DFT be

9rN log2N + 2r2sn.

The total of operations with use DFT in algorithm of calculation of a determinant is equal

n2r(7sdlogh αe+ 9N log2N) + 8n3rN + 9rN log2N + 2r2sn. (2)

Let's result expression of complexity of algorithm of calculation of the determinant, using
CRT both for polynomials, and for their factors:

n2r(7sdlogh αe+ ns2) + 8n4sr + 2n2s2r + 2r2sn. (3)

1362

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

N = 2dlog2 nse in (2), (3).
If ns is equally exact degree of number 2 estimations (2) and (3) look likes (4) and (5):

n2r(7sdlogh αe+ 9ns log2(ns)) + 8n4rs+ 9ns log2(ns) · r + 2r2sn, (4)

n2r(7sdlogh αe+ ns2) + 8n4rs+ 2n2s2 · r + 2r2sn. (5)

3.3.2 Calculation of a characteristic polynomial

The algorithm for calculation of characteristic polynomial of a matrix [6] is known. The given
algorithm also has complexity O(n3) by ring operations. The di�erence is in a value estimation
r and it is necessary to recover n polynomials. For the given algorithm r1 = logh 2nnsn−1αn .
Complexity of this algorithm is

n2r1(7sdlogh αe+ 9N log2N) + 8n3r1N + n(9r1N log2N + 2r2
1sn). (6)

The classical approach with use CRT both for polynomials, and for numbers has complexity

n2r1(7sdlogh αe+ ns2) + 8n4r1s+ n(2n2s2r1 + 2r2
1sn). (7)

If ns equally exact degree of number 2 estimations (6) and (7) look like (8) and (9):

n2r1(7sdlogh αe+ 9ns log2(ns)) + 8n4r1s+ n(9ns log2(ns) · r + 2r2
1sn), (8)

n2r1(7sdlogh αe+ ns2) + 8n4r1s+ n(2n2s2 · r1 + 2r2
1sn). (9)

3.3.3 Calculation of the adjoint matrix

The algorithm of calculation of the adjoint matrix also has complexity O(n3) by ring operations.
The number of prime modules is

r = logh 2(
√

2πn
(n
e

)n
e

1
12n sn−1αn).

It is necessary to recover n2 polynomials from their images. Thus, the general complexity of
algorithm is

n2r(7sdlogh αe+ 9N log2N) + 8n3rN + n2(9rN log2N + 2r2sn). (10)

We also result the expression of complexity of a classical method:

n2r(7sdlogh αe+ ns2) + 8n4rs+ n2(2n2s2r + 2r2sn). (11)

If ns is equally exact degree of number 2 estimations (10) and (11) looks like (12) and (13):

n2r(7sdlogh αe+ 9ns log2(ns)) + 8n4rs+ n2(9ns log2(ns) · r + 2r2sn), (12)

n2r(7sdlogh αe+ ns2) + 8n4rs+ n2(2n2s2 · r + 2r2sn). (13)

1363

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

3.4 Experimental comparison between the algorithms of calculation

of a determinant, a characteristic polynomial and the matrix

On expressions of complexity algorithms with use DFT are close to what use CRT for
polynomials and CRT for coe�cients. The di�erence only that complexity of calculation of
remainders of division of polynomials on prime modules x, x + 1, . . . , x + ns makes ns2

and polynomial recovering from its remainders of division by prime modules demands 2n2s2

operations, and computing the image of a polynomial at DFT and recovering a polynomial from
its DFT-image demands 9N log2N operations. As N ∼ ns DFT has advantage. By theoretical
estimations the prize is greatest in case that ns is exact degree of number 2.

Let's present results of computing experiments.

Comparison of algorithms for calculation of a determinant, characteristic polynomial and
the adjoint matrix was spent.

We compared two algorithms for calculation of a determinant: the �rst one is based on CRT
only and the second one is based on FFT for polynomials.

For calculation of a characteristic polynomial of a matrix over a ring Z[x] two algorithms
were compared: Danilevsky's algorithm with application CRT for polynomial prime modules
and New algorithm [6] in which operations over polynomials are replaced by operations over
their images of transformation of Fourier. For restoration of factors of a polynomial as a result
in both algorithms CRT was used.

For calculation of the ajoint matrix it was spent comparison of two algorithms: the �rst one
is based on CRT only and the second one is based on FFT for polynomials.

Results are presented in Tables 8-10.

Table 8

Results of experiments with calculation of a determinant of a matrix

s = 2, bits = 8, n increases

n CRT, ms FFT, ms

2 38 26 1.46/1

4 30 13 2.3/1

8 70 48 1.45/1

16 1094 952 1.14/1

32 25009 22203 1.12/1

64 625352 506382 1.35/1

n = 8, bits = 8, s increases

s CRT, ms FFT, ms

2 76 51 1.48/1

4 132 124 1.06/1

8 276 249 1.11/1

16 755 501 1.51/1

32 1884 1010 1.87/1

64 5040 2538 1.99/1

Table 9

Results of experiments with calculation of a characteristic polynomial

bits = 32, s = 8, n increases

n Danilevsky's New algorithm

algorithm, ms with DFT, ms

4 63 23 2.74/1

8 415 143 2.90/1

16 7655 3619 2.12/1

32 162543.0 99562 1.63/1

1364

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

bits = 32, n = 8, s increases

n Danilevsky's New algorithm

algorithm, ms with DFT, ms

16 1705 761 2.24/1

32 5586 1181 4.73/1

64 23204 2671 8.69/1

Table 10
Results of experiments with calculation of the adjoint matrix

s = 2, bits = 8, n increases

n CRT,ms FFT,ms

2 1 1 1/1

4 7 5 1.4/1

8 118 67 1.76/1

16 2574 1164 2.21/1

32 65679 27226 2.41/1

64 1775930 611129 2.91/1

n = 8, bits = 8, s increases

s CRT,ms FFT,ms

2 132 73 1.81/1

4 325 138 2.35/1

8 968 284 3.41/1

16 4034 589 6.85/1

32 14834 1171 12.67/1

64 55809 2354 23.71/1

It is clear from Tab. 8-10 that the greatest advantage with DFT has the approach in
algorithm of calculation of the adjoint matrix.

4 Parallel algorithm of DFT calculation

Let f ∈ Zp[x1, x2, . . . , xd], p - prime number. Let the greatest degree of a variable xi is equal
ni − 1 in the polynomial f , ni = 2Ni . We designate that n = n1n2 . . . nd . The polynomial f
can be written down in a form:

f =

n1−1∑
i1=0

n2−1∑
i2=0

. . .

nd−1∑
id=0

fi1i2...inx
i1
1 x

i2
2 . . . x

id
d .

Let the prime number p be so that ni divides p− 1 . Then in Zp there is the root degree
ni from 1 which we designate ωi . We enter de�nition of discrete Fourier transform for the
polynomial f .

D e f i n i t i o n: Discrete transformation of Fourier (DFT) for a polynomial f is called
dthe -dimensional table of numbers F(f) = (f̂j1...jd) , where 1 6 j1 6 n1, 1 6 j2 6 n2, . . . 1 6
jd 6 nd , where

f̂j1j2...jd =

n1−1∑
i1=0

n2−1∑
i2=0

. . .

nd−1∑
id=0

fi1i2...inω
j1i1
1 ωj2i22 . . . ωjdidd . (14)

The right part (14) contains n composes. In the left part there is an element dthe -
dimensional table, the number of all elements is equal n .

Hence, total number of operations for calculation DFT of a polynomial f is O(n2) . We
consider a way of fast calculation of DFT. Let's write down the formula (1) in a kind:

f̂j1j2...jd =

nd−1∑
id=0

ωjdidd

nd−1−1∑
id−1=0

ω
jd−1id−1

d−1 . . .

nk−1∑
ik=0

ωjkikk . . .

n1−1∑
i1=0

fi1i2...idω
j1i1
1 .

1365

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

At the �xed parameters i2, . . . , id expression

F 1
j1,i2,i3,...,id

=

n1−1∑
i1=0

fi1i2...idω
j1i1
d �

element with number j1 of one-dimensional discrete transformation of Fourier on n1 points
which can be counted on algorithm Cooley-Tukey [1] for O(n1 log2 n1) operations.

Let's designate

F k+1
j1,...,jk+1,ik+2,...,id

=

nk+1−1∑
ik+1=0

F k
j1,...,jk,ik+1...id

ω
jk+1ik+1

d .

At consecutive calculation F1, F2, . . . , Fd the element Fd contains DFT a polynomial
f . The parallelization scheme consists of d consecutive steps, each of them is carried out in
parallel. It is possible to present the scheme of calculation of each step in the form of a binary
tree at which the data is distributed from root vertex to leaf, and the result of calculations
gathers again in the root. On each step in parallel to be calculated one-dimensional DFT, thus
all calculations occur in leaf vertexes. At transition to a following step the order of variables
varies, and after a step d the required d -dimensional vector of DFT is received. We are resulting
the algorithm.

Algorithm.

Let's spend calculations in a following order: on the step k are in parallel calculated n/nk
DFTs at the �xed values of indexes j1 . . . jd−k−1jd−k+1 . . . jd .

Let Fk be the result of calculations of k -th step, and let F0 = f .

Let's result the scheme of calculations at the step k . In root vertex d -dimensional array
received on the previous step splits on two equal parts by an index jk .

And each part goes to corresponding a�liated top. In a�liated tops division repeats by
the same index on two half. Such process is carried out recursively to those while there are
free processors or while division on the given index, i.e. number of the processors involved in
calculations less n/nk , is possible. At leaf level one-dimensional DFTs are calculated and the
result comes back upside-down. Then, at the transition to a next step of calculations, the order
of indexes of the array varies from [jd−k+2j1 . . . jd−k+1] to [jd−k+1j1...jd−k] . We notice that on
the step k to it is required no more, than n/nk processors.

Let there are m computer modules (CM) with numbers of 1 . . .m . Let k = 1 .

1) The CM with number 1 receives d -dimensional array and the list of free CM. Degrees

w
id−k+1jd−k+1

d−k+1 are calculated. The array and the list of free processors are halved. One half of
array and the list of free processors together with a array of degrees is sent to CM with number
(n/2 + 1) , and second half remain in the given CM.

2) Each CM which has received the part of a problem, continues such division further.
Process proceeds before achievement of sheet level, or exhaustion of all free processors.

3) Parallel calculation of one-dimensional Fourier transform is carried out.

4) Each CM sends result back on a tree to that processor from which has obtained the data.

5) The CM 1 collects result and changes an indexation order in result array from
[jd−k+2j1jd−k+1] to [jd−k+1j1...jd−k] .

6) Number k increases. If k = d + 1 the end of all calculations, di�erently we pass to
item 1.

1366

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

D e f i n i t i o n: E�ciency of computation on k processors with comparison on n processors
is

an,k =
tn
tk
− 1

k
n
− 1

.

On this algorithm the program complex on cluster MVS the Russian Academy of Sciences
is developed. Results are presented in Table 11.

Table 11
Time and speedup of parallel algorithm for calculation DFT for polynomial of two and three

variables in �nite �eld Zp

d=2

Time, ms E�ciency, %

n 512 1024 2048 4096 8192 n 512 1024 2048 4096 8192
procs procs

1 817 6838 47466 371882 67108864 1

2 608 3918 31059 190410 2267073 2 67.19 87.26 76.41 97.65 1480.08
4 424 1755 11470 79170 715310 4 71.7 111.62 135.39 120.25 158.47
8 374 1109 4220 30643 210488 8 56.68 79.13 135.9 129.18 169.92
16 323 730 2785 11514 83500 16 57.89 75.96 75.76 133.07 126.04
32 294 649 1792 6372 36665 32 54.93 56.24 77.71 90.35 113.87
64 367 576 1454 4732 18416 64 40.05 56.34 61.62 67.33 99.55
128 454 571 1341 3749 11462 128 40.42 50.44 54.21 63.11 80.34
256 516 1423 4571 12469 256 43.99 47.12 41.01 45.96

d = 3

Time, ms E�ciency, %

n 32 64 128 256 n 32 64 128 256

procs procs

1 345 6916 212756 8140475 1 − − − −
2 263 3446 111121 2955568 2 31.18 100.7 91.46 175.43
4 175 1731 45085 1055536 4 32.38 99.85 123.97 223.74
8 129 888 12420 358084 8 23.92 96.98 230.43 310.48
16 86 490 4726 127972 16 20.08 87.43 293.45 417.41
32 68 290 2466 66859 32 13.14 73.7 275.08 389.54
64 58 316 1495 17918 64 7.85 33.15 224.3 719.55
128 433 184 945 7554 128 −0.16 28.81 176.49 847.75

5 Parallel algorithm of multiplication of polynomials of

many variable integers in a ring by means of discrete

transformation of Fourier

In work [1] the consecutive algorithm of multiplication of polynomials of one variable by means
of DFT is described.

It is o�ered to calculate product of polynomials in r �nal �elds Zp0 , . . . , Zpr−1 with the
subsequent recoverong of result in Z with the Chinese remainder theorem.

If the number of variables in a polynomial more than one such algorithm can be carried out
on several processors by parallelization calculations of direct and inverse DFTs and calculations
over prime modules.

Let f, g - polynomials in a ring Z[x0, x1, . . . , xd−1] .

f =

n1−1∑
i1=0

n2−1∑
i2=0

. . .

nd−1∑
id=0

fi1i2...inx
i1
1 x

i2
2 . . . x

id
d ,

1367

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

g =

m1−1∑
i1=0

m2−1∑
i2=0

. . .

nd−1∑
md=0

gi1i2...inx
i1
1 x

i2
2 . . . x

id
d .

Let af , ag - maximum on the coe�cients of polynomials f and g accordingly. We designate
n = n0 · . . . · nd−1 , m = m0 · . . . ·md−1 . Then h = min{n,m} · afag - the top estimation of
maxixmum on the coe�cient in product of polynomials f and g . Then necessary for restoration
of result the number of 32-bit prime modules r = dlog232 he .

Let si = 2Si - the minimum natural number, greater than ni + mi . Let there is a
computer with k = 2K processors with numbers of 0, . . . , k − 1 . We result parallel algorithm
of multiplication of polynomials.

1. Processor with number 0 de�nes the necessary number of prime modules p0, . . . , pr−1 .
Let r = 2R . We get t = r/k . In case r < k sending of polynomials is executed only to
r the �rst processors.

2. Processor 0 sends polynomials f , g and prime numbers p0, . . . , pr−1 to the processor
with number i = 0, . . . , k−1 . Following steps are carried out in parallel on each processor.

3. On the processor with number i product of polynomials hi/t = fg on modules
pi/t, . . . , p(i+1)/t−1 by means of DFT is calculated. If r < k each processor uses k/r − 1
of free processors for parallelization of DFT calculations.

4. Splitting arrays of coe�cients for polynomial hi/t = fg on k parts h0
i/t, . . . , h

k−1
i/t is

carried out.

5. Send parts hqi/t to the processor with number q .

6. Receive hqi/t on the processor with number q .

7. Recovering hq polynomial coe�cients h is carried out.

8. On the processor 0 polynomial assemblage h is carried out.

9. End of calculations.

6 Conclusion

In the given work comparison of two approaches has been spent to the organization of
polynomial arithmetics over a ring of integers.

In section 2 the problem of multiplication of two polynomials with degree m , with
the coe�cients length w of machine words was considered. Theoretical and experimental
comparison of following algorithms was spent:

0. Standard algorithm of multiplication of numbers and polynomials (PSS) with complexity
O(m2w2) .

1. Karatsuba's algorithm for multiplication of numbers and standard algorithm
of multiplication of polynomials (PSK) with complexity O(m2wlog2 3) .

2. Standard algorithm of multiplication of numbers and Karatsuba's algorithm
for multiplication of polynomials (PKS) with complexity O(mlog2 3w2) .

1368

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

3. Karatsuba's algorithm for multiplication both numbers and polynomials (PKK) with
complexity O(mlog2 3wlog2 3)

4. The algorithm of multiplication using DFT (PF) with complexity O(w(m log2m)+mw2) .
The best algorithm at increase in degree of polynomials was an algorithm 4. On the average
the relative di�erence in theoretical and experimental estimations makes 35.86 %.

In section 3 algorithms of multiplication of polynomial matrices of the size n which elements
are degree polynomials m with the coe�cients length w of machine words were considered:

0. Modular algorithm of multiplication of the matrices, using CRT both for polynomials,
and for their factors (MCC) with complexity O(n3m+ n2(wm2 +mw2) .

1. Modular algorithm of multiplication of the matrices, Fourier using fast transformation for
polynomials and CRT for their factors (MFC) with complexity O(n3m+n2(wm log2m+mw2) .

The best algorithm at increase of degree of polynomials in a matrix is MFC. At the �xed
degree of polynomials and increasing n the best algorithm is MCC by results of theoretical
and experimental comparison. Average relative distinction in theoretical and experimental
comparison makes 24.37 %.

At a theoretical estimation of algorithms of calculation of a determinant, a characteristic
polynomial and the adjoint matrix, for the matrices which elements are polynomials of one
variable with the integer coe�cients, following expressions of complexity have been received:

Table 12
Theoretical expression of complexity for algorithms of calculation of a determinant, a
characteristic polynomial and the adjoint matrix for the matrices which elements are

polynomials of one variable with the integer coe�cients. n - the size of a matrix, s - the
maximum degree of a polynomial in a matrix, α - maximum on the module of polynomial's

coe�cient in a matrix, r - the number of the prime numerical modules necessary for
calculation of a determinant and the adjoint matrix, r1 - the number of the prime numerical

modules necessary for calculation of a characteristic polynomial, h = 232

Algorithm CRT+CRT CRT+DFT

Determinant n2r(7sdlogh αe+ ns2)+ n2r(7sdlogh αe+ 9ns log2(ns))+
+8n4rs+ 2n2s2 · r + 2r2sn 8n4rs+ 9ns log2(ns) · r + 2r2sn

Char. polynomial n2r1(7sdlogh αe+ ns2)+ n2r1(7sdlogh αe+ 9ns log2(ns))+
8n4r1s+ n(2n2s2 · r1 + 2r2

1sn) +8n4r1s+ n(9ns log2(ns) · r + 2r2
1sn)

Adjoint matrix n2r(7sdlogh αe+ ns2) n2r(7sdlogh αe+ 9ns log2(ns))
+8n4rs+ n2(2n2s2 · r + 2r2sn) +8n4rs+ n2(9ns log2(ns) · r + 2r2sn)

From Table 12 it is clear that the best results the DFT-arithmetic has been shown
at a calculation of the adjoint matrix. In problems of calculation of a determinant and a
characteristic polynomial the algorithms using DFT, lose the e�ciency with growth of the
sizes of a matrix.

The algorithm of parallel calculation DFT in a �nite �eld has shown high scalability on the
number of processors from 2 to 256. Algorithm acceleration varies from -0.16 % up to 1480
%. It is possible to explain such acceleration to that at increase in the number of processors
the computing problem on everyone becomes small enough for e�ective work with the data in
cache-memory of the processor.

1369

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

The further direction of researches is the implementation of parallel DFT-algorithms for
multiplication of matrices, calculations of a determinant, a characteristic polynomial and the
adjoint matrix.

References

1. Noden P., Kitte K. Algebraic algorithmic (with exercises and solutions)/ the traslation
from French, The World, 1999.

2. Moreno Maza M., Xie Y. FFT-based Dense polynomial Arithmetic on Multi-cores // HPCS
2009: post-conference proceedings. 2009.

3. Moreno Maza M., Xie Y. Balanced Dense polynomial Multiplication on Multi-cores
// Proceedings of Parallel and Distributed Computing, Applications and Technologies
(PDCAT). 2009.

4. Knut D.E. The art of programming. V. 2. Seminumerical algorithms. The publishing house
¾Williams¿, 2001.

5. Kormen, Thomas S., Lejzerson, Rivest Ch., Shtojn R., Kli�ord Algorithms: construction
and the analysis, 2 edition/ the translation from English, The Publishing house ¾Williams¿,
2005.

6. Pereslavtseva O.N. The method of calculation of a characteristic polynomial of a matrix//
Tambov University Reports. Series Natural and Technical Sciences. 2008. V. 13. Issue 1.
P. 131-133.

7. Lapaev A.O. Comparison of algorithms of multiplication of polynomials // International
conference polynomial Computer Algebra. St. Petersburg. PDMI RAS. 2008. P. 39 - 40.

8. Lapaev A.O. Parallel computation of discrete Fourier transform of a polynomial in
a �nite �eld//Materials of 9th international conference-seminar High-e�ciency parallel
calculations on cluster systems. Vladimir, 2009. P. 272-273.

9. Lapaev A.O. About calculation of multidimensional discrete transformation of Fourier in
a �nite �eld // Tambov University Reports. Natural and Technical Sciences. 2009. V. 14.
Issue 4. P. 729-731.

10. Lapaev A.O. Algorithms for polynomial matrices with use DFT // International conference
polynomial Computer Algebra. St. Petersburg. PDMI RAS. 2009. P. 141-146.

11. Lapaev A.O. On calculation of determinant and a characteristic polynomial of polynomial
matrix with use of discrete Fourier transform // Tambov University Reports. Natural and
Technical Sciences. 2009. V. 14. Issue 1. P. 281-282.

12. Malaschonok G I., Valeev Yu. D., Lapaev A. O. On the choice of multiplication algorithm
for polynomials and polynomial matrices // Zapiski POMI. 2009. V. 373. P. 157-188.

1370

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

GRATITUDES: Supported by the Sci. Program Devel. Sci. Potent. High. School, RNP
2.1.1.1853.

Accepted for publication 7.06.2010.

ÄÏÔ ÄËß ÏÎËÈÍÎÌÎÂ Â ÏÀÐÀËËÅËÜÍÛÕ ÀËÃÎÐÈÒÌÀÕ

c© Àëåêñåé Îëåãîâè÷ Ëàïàåâ
Òàìáîâñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò èì. Ã.Ð. Äåðæàâèíà, Èíòåðíàöèîíàëüíàÿ, 33,

Òàìáîâ, 392000, Ðîññèÿ, àñïèðàíò êàôåäðû êîìïüþòåðíîãî è ìàòåìàòè÷åñêîãî
ìîäåëèðîâàíèÿ, e-mail alapaev@gmail.com

Êëþ÷åâûå ñëîâà: ïîëèíîìû; äèñêðåòíîå ïðåîáðàçîâàíèå Ôóðüå; ïàðàëëåëüíûé àë-
ãîðèòì; ìåòîä ãîìîìîðôíûõ îáðàçîâ; êëàñòåð.
Ðàññìàòðèâàþòñÿ ïîñëåäîâàòåëüíûå è ïàðàëëåëüíûå àëãîðèòìû äëÿ ïîëèíîìèàëü-
íîé àðèôìåòèêè, îñíîâàííûå íà äèñêðåòíîì ïðåîáðàçîâàíèè Ôóðüå (ÄÏÔ). Îá-
ñóæäàþòñÿ àëãîðèòìû äëÿ óìíîæåíèÿ ïîëèíîìîâ. Ïðèâåäåíû ïîñëåäîâàòåëüíûå
àëãîðèòìû äëÿ ïîëèíîìèàëüíûõ ìàòðèö. Êàæäûé àëãîðèòì, îñíîâàííûé íà ÄÏÔ,
ñðàâíèâàåòñÿ ñ àíàëîãè÷íûì àëãîðèòìîì, èñïîëüçóþùèì êèòàéñêóþ òåîðåìó îá
îñòàòêàõ. Â ïîñëåäíåé ÷àñòè ðàáîòû ïðèâåäåíû ïàðàëëåëüíûå àëãîðèòìû äëÿ âû-
÷èñëåíèÿ ÄÏÔ è óìíîæåíèÿ ïîëèíîìîâ ìíîãèõ ïåðåìåííûõ. Ïðèâåäåíû ðåçóëüòà-
òû ýêñïåðèìåíòîâ íà êëàñòåðå ÌÂÑ100Ê â ÌÑÖ ÐÀÍ.

1371

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

UDC 519.688

FAST MATRIX DECOMPOSITION IN PARALLEL COMPUTER ALGEBRA

c© Gennadi Ivanovich Malaschonok
Tambov State University named after G.R. Derzhavin, Internatsionalnaya, 33, Tambov,
392000, Russia, Doctor of Physics and Mathematics, Professor of Mathematical Analysis

Department, e-mail: malaschonok@ya.ru

Key words: fast algorithms; matrix decomposition; parallel algorithms; computer
algebra.
The new algorithms for �nding matrix decomposition and matrix inversion in
arbitrary �elds are described. For the commutative domains the algorithm for �nding
adjoint matrices is proposed. These algorithms have the same complexity as matrix
multiplication and do not require pivoting. For singular matrices they allow to obtain
a nonsingular block of the biggest size. The proposed algorithms are pivot-free, and
do not change the matrix block structure. They are suitable for parallel hardware
implementation.

1 Introduction

One of the popular linear algebra method is LU matrix decomposition. A lot of di�erent
implementations are well known for this decomposition. But the LU decomposition requires
pivoting. With partial pivoting it has the form PA = LU and with full pivoting (Trefethen and
Bau) it has the form PAQ = LU , where L and U are the lower- and the upper- triangular
matrices, P and Q are the permutation matrices.

Another well known decomposition is the decomposition of inverse matrix, which is based

on the Schur complement trick. Let A =

(
A C
B D

)
be an invertible matrix with invertible

block A , then the inverse matrix A−1 can be written in the form(
I −A−1C
0 I

)(
I 0
0 (D −BA−1C)−1

)(
I 0
−B I

)(
A−1 0

0 I

)
.

In these algorithms it is assumed that principal minors are invertible and the leading elements
are nonzero as in the most of the direct algorithms for matrix inversion. Fast matrix multiplication
and fast block matrix inversion were discovered by Strassen [1]. If we used fast matrix
multiplication then we get the recursive algorithm for matrix inversion which has the same
complexity as the algorithm of matrix multiplication.

In a general case it is necessary to �nd suitable nonzero elements and to perform permutations
of matrix columns or rows. Bunch and Hopkroft suggested such algorithm with full pivoting
for matrix inversion [2].

There are known other recursive methods for adjoint and inverse matrix computation, which
have the complexity of matrix multiplications ([3]-[5]).

1372

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

The permutation operation is not a very di�cult operation in the case of sequential
computations by one processor, but it is a di�cult operation in the case of parallel computations,
when di�erent blocks of a matrix are disposed in di�erent processors. A matrix decomposition
without permutations is needed for parallel computation for construction of e�cient and fast
computational schemes.

The problem of obtaining pivot-free algorithm was studied in [6], [7] by S.Watt. He
presented the algorithm that is based on the following identity for a nonsingular matrix:
A−1 = (ATA)−1AT . Here AT is the transposed matrix to A and all principal minors of
the matrix ATA are nonzero. This method is useful for making an e�cient parallel program
with the help of Strassen's fast decomposition of inverse matrix for dense nonsingular matrix
over the �eld of zero characteristic when �eld elements are represented by the �oat numbers.
Other parallel matrix algorithms are developed in [8] - [11].

Another form of matrix A decomposition is Bruhat decomposition A = V wU , where
V and U are nonsingular upper triangular matrices and w is a matrix of permutation.
French mathematician Francois Georges Ren�e Bruhat was the �rst who worked with matrix
decomposition in this form. Bruhat decomposition plays an important role in algebraic group.
The generalized Bruhat decomposition was introduced and developed by D.Grigoriev [1], [12].
He uses the Bruhat decomposition in the form A = V wU , where V and U are upper triangular
matrices but they may be singular when the matrix A is singular. Sparsity pattern of triangular
factors of the Bruhat decomposition of a nonsingular matrix over a �eld was analyzed in [13]
and [14].

This paper is devoted to the construction of matrix decomposition methods in a common
case of singular matrices in a �eld of arbitrary characteristic and in the domain.

For the matrix over the �eld two decompositions will be constructed which have the
forms LAU = E and FA = H . For the matrix over the domain one decompositions will
be constructed of the form: GA = dH . Where L and U are lower and upper nonsingular
triangular matrices, F and G is a nonsingular matrix, d is a determinant of some nonsingular
block of matrix A which size is equal rank(A) and equalities rank(E) = rank(H) = rank(A)
hold.

In the case of full rank matrix A the matrix E and H are permutation matrices, UETL
and HTF are inverse matrices for matrix A , and HTG is the adjoint matrix for the matrix
A .

These algorithms have the same complexity as matrix multiplication and do not require
pivoting. For singular matrices they allow to obtain a nonsingular block of the biggest size and
the echelon form and the kernel of matrix.

The preliminary variants of these algorithms were developed in [15], [16] and [17].

The rest of the paper is organized as follows. Section 2 provides some necessary background
and notations. Section 3 presents the algorithm of LEU decomposition. Section 4 presents the
fast matrix decomposition in the �eld and computation of the inverse matrix. Section 5 presents
the fast matrix decomposition in the commutative domain and computation of ajoit matrix. In
the Appendix 6 we dispose the proof of the theorem 1.

2 Preliminaries

We introduce some notations that will be used in the following sections.

1373

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Let F be a �eld, F n×n be an n × n matrix ring over F , Sn be a permutation group of
n elements. Let Pn be a multiplicative semigroup in F n×n consisting of matrices A having
exactly rank(A) nonzero entries, all of them equal to 1 . We call Pn the permutation semigroup
because it contains the permutation group of n elements Sn and all their truncated matrix.

The semigroup Dn ⊂ Pn is formed by the diagonal matrices. So |Dn|= 2n and the identity
matrix I is the identity element in Dn , Sn and Pn .

Let Wi,j ∈ Pn be a matrix, which has only one nonzero element in the position (i, j) .
For an arbitrary matrix E of Pn , which has the rank n − s (s = 0, ..n) we shall denote by
iE = {i1, .., is} the ordered set of zero row numbers and jE = {j1, .., js} the ordered set of zero
column numbers.

De�nition 1 Let E ∈ Pn be the matrix of the rank n − s , let iE = {i1, .., is} and jE =
{j1, .., js} are the ordered set of zero row numbers and zero columns number of the matrix E .
Let us denote by E the matrix

E =
∑
k=1,..s

Wik,jk

and call it the complimentary matrix for E . For the case s = 0 we put E = 0 .

It is easy to see that ∀E ∈ Pn : E + E ∈ Sn , and ∀I ∈ Dn : I + I = I . Therefore the map
I 7→ I = I− I is the involution and we have II = 0 . We can de�ne the a partial order on Dn :
I < J ⇔ J − I ∈ Dn . For each matrix E ∈ Pn we shall denote by

IE = EET and JE = ETE

the diagonal matrix: IE, JE ∈ Dn . The unit elements of the matrix IE show nonzero rows of
the matrix E and the unit elements of the matrix JE show nonzero columns of the matrix E .
Therefore we have several zero identities:

ET IE = IEE = EJE = JEE
T = 0. (1)

For any pair I, J ∈ Dn let us denote the subset of matrices F n×n

F n×n
I,J = {B : B ∈ F n×n, IBJ = B}.

We call them (I, J) -zero matrix. It is evident that F n×n = F n×n
I,I , 0 ∈ ∪I,JF n×n

I,J and if I2 < I1

and J2 < J1 then F n×n
I2,J2
⊂ F n×n

I1,J1
.

De�nition 2 We shall call the factorization of the matrix A ∈ F n×n
I,J

A = L−1EU−1, (2)

LEU -decomposition if E ∈ Pn , L is a nonsingular lower triangular matrix, U is an upper
unitriangular matrices and

L− IE ∈ F n×n
I,IE

, U − JE ∈ F n×n
JE ,J

. (3)

If (2) is the LEU -decomposition we shall write

(L,E, U) = LU(A),

1374

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Sentence 1 Let (L,E, U) = LU(A) be the LEU -decomposition of matrix A ∈ F n×n
I,J then

L = IE + ILIE, U = JE + JEUJ, E ∈ F n×n
I,J , (4)

L−1 = IE + L−1IE, U
−1 = JE + JEU

−1.

Proof 1 The �rst and second equalities follows from (3). To prove the property of matrix E
we use the commutativity of diagonal semigroup Dn :

E = LAU = (IE + ILIE)IAJ(JE + JEUJ) = I(IE + LIEI)A(JE + JJEU)J.

To prove the property of matrix L−1 let us consider the identity

I = L−1L = L−1(IE + LIE) = L−1IE + IIE.

Therefore L−1IE = IE and L−1 = L−1(IE + IE) = IE + L−1IE . The proof of the matrix U−1

property may be obtained similarly.

Sentence 1 states the property of matrix E , which may be written in the form IE < I , JE < J .
We shall call it the property of immersion.

Examples.
For any matrix I ∈ Dn , E ∈ Pn , 0 6= a ∈ F the product (aI + I)I I is a LEU

decompositions of matrix aI and the product (aIE + IE)E I is a LEU decompositions of
the matrix aE .

3 Algorithm of LEU decomposition

Theorem 1 For any matrix A ∈ F n×n of size n = 2k, k > 0 a LEU -decomposition exists.
For computing such decomposition it is enough to compute 4 LEU -decompositions and 17
multiplications for the matrices of size n = 2k−1 .

The proof of this theorem is in the Appendix.

Theorem 2 For any matrix A of size s, (s > 1) , an algorithm of LEU -decomposition which
has the same complexity as matrix multiplication exists.

Proof 2 We have proved an existence of LEU -decomposition for matrices of size 2k, k > 0.
Let A ∈ F s×s

I,J be a matrix of size 2k−1 < s < 2k , A′ be a matrix of size 2k , which has in the
left upper corner the submatrix equal A and all other elements equal zero. We can construct
LEU -decomposition of matrix A′ : (L′, E ′, U ′) = LU(A′) . According to the Sentence 1 the
product L′A′U ′ = E ′ has the form(

L 0
0 I

)(
A 0
0 0

)(
U 0
0 I

)
=

(
E 0
0 0

)
.

Therefore LAU = E is a LEU decomposition of matrix A .
The total amount of matrix multiplications in (7)-(15) is equal to 17 and total amount of

recursive calls is equal to 4. We do not consider multiplications of the permutation matrices.

1375

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

We can compute the decomposition of the second order matrix by means of 5 multiplicative
operations. Therefore we get the following recurrent equality for complexity

t(n) = 4t(n/2) + 17M(n/2), t(2) = 5.

Let γ and β be constants, 3 > β > 2 , and let M(n) = γnβ + o(nβ) be the number of
multiplication operations in one n× n matrix multiplication.

After summation from n = 2k to 21 we obtain

17γ(402β(k−1) + . . .+ 4k−22β1) + 4k−25 = 17γ
nβ − 2β−2n2

2β − 4
+

5

16
n2.

Therefore the complexity of the decomposition is

∼ 17γnβ

2β − 4
.

If A is an invertible matrix, then A−1 = UETL and a recursive block algorithm of matrix
inversion is written in the expressions (7)-(15). This algorithm has the complexity of matrix
multiplications.

4 Algorithm with one-sided decomposition

Let us introduce the set of h -matrices in the ring F n×n . We say that a matrix H is of h -type
if for some matrix E ∈ Pn the two equations H = IEH and E = HJE take place. We call
E the main part of the h -type matrix H . In other words, the sets of zero rows of matrices H
and E coincide and each nonzero column of matrix E stands at the same place in the matrix
H . In particular, if H is nonsingular, then H ∈ Sn . The nonzero columns of matrix E are
called the main columns of matrix H .

Let A ∈ F n×n be a matrix of rank (A) = r 6 n . We wish to obtain a nonsingular matrix
R with the following properties:

(1) RA = H and H is a matrix of h -type with main part E ∈ Pn .
(2) If A = IA , I ∈ Dn , rank I = r , then R = I + IRI .

If A is invertible, then HTH = I and A−1 = HTR . As this algorithm is a generalization
of the inversion algorithm, we call it the H -inversion algorithm.

One recursive step RA = H may be written as three matrix multiplications

R1A = A1, R2A
1 = A2, R3A

2 = A3, R = R3R2R1, A
3 = H.

It is easy to produce the required matrices R when the size of matrix A equals 2. Let the
size of the matrix A equals 2n and matrices A and Ai have the following block form:

A =

(
A11 A12

A21 A22

)
, Ai =

(
Ai11 Ai12

Ai21 Ai22

)
, (i = 1, 2, 3).

1376

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

4.1 The �rst substep

Let R11A11 = H11 and H11 be the h -type matrix with the main part E11 . We denote J11 =
ET

11E11, I11 = E11E
T
11 and put

R1 =

(
I 0

−A21E
T
11 I

)(
R11 0
0 I

)
A and R1A = A1.

Then we obtain the following blocks of the matrix A1 :

A1
11 = H11, A

1
12 = R11A12, A

1
21 = A21(I− ET

11H11), A1
22 = A22 − A21E

T
11A

1
12.

Let us note that A1
21 = A1

21J11 , because in the place of each nonzero column of matrix E11 in
the matrix I− ET

11H11 the zero column stands.

4.2 The second substep

Let the matrices R12 and R21 satisfy the equations

R12A
1
12 = H12, R21A

1
21 = H21,

where H12 and H21 are the h -type matrices with the main parts E12 and E21 respectively. Let
us denote B1

22 = R21A
1
22 . Consider the diagonal matrices J12 = ET

12E12, J21 = ET
21E21, I12 =

E12E
T
12, I21 = E21E

T
21 and put

R2 =

(
I −A1

11E
T
21

0 I

)(
I 0

−B1
22E

T
12 I

)(
I− I11A

1
12E

T
12 0

0 I

)(
R12 0
0 R21

)
=

=

(
(I− I11A

1
12E

T
12 + A1

11E
T
21B

1
22E

T
12)R12 −A1

11E
T
21R21

−B1
22E

T
12R12 R21

)
.

Using the identities H12 = I11H12 , I11E12 = 0 , ET
12I11 = 0 , and the fact, that R12 = I11 +

I11R12I11 and H11 = I11H11

R12H11 = H11, E
T
12R12H11 = 0, ET

12R12A
1
12 = ET

12H12,

we get the block

A2
12 = R12A

1
12 + (−I11A

1
12 + A1

11E
T
21B

1
22)ET

12H12 − A1
11E

T
21B

1
22 =

H12 + I11A
1
12 − I11A

1
12E

T
12H12 + A1

11E
T
21B

1
22(ET

12H12 − I) =

H12 + (I11A
1
12 − A1

11E
T
21B

1
22)(I− ET

12H12),

and other blocks of matrix A2 :
A2

11 = H11(I− ET
21H21),

A2
12 = H12 + (I11A

1
12 − A1

11E
T
21B

1
22)(I− ET

12H12) ,
A2

21 = H21,
A2

22 = B1
22(I− ET

12R12A
1
12) = B1

22(I− ET
12H12) .

Let us note that these blocks have the properties A2
11 = A2

11J21, A
2
21 = A2

21J1, A
2
12−E12 =

(A2
12 − E12)J12, A

2
22 = A2

22J12. We use them in the following section.

1377

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

4.3 The third substep

Let the matrices R22 satisfy the equation

R22A
2
22 = H22,

where H22 is the h -type matrix with the main part E22 .
Let us consider the diagonal matrices J22 = ET

22E22, I22 = E22E
T
22 and put

R3 =

(
I −A2

12E
T
22

0 I

)(
I 0
0 I− I21A

2
22E

T
22

)(
I 0
0 R22

)
=

(
I −A2

12E
T
22R22

0 (I− I21A
2
22E

T
22)R22

)
.

Then we obtain the matrix A3 = R3A2 with the blocks:

A3
11 = A2

11, A
3
21 = A2

21, A
3
12 = A2

12(I− ET
22H22), A3

22 = H22 + I21A
2
22(I− ET

22H22)

that have the properties A3
12 = A3

12J22 , A
3
22 − E22 = (A3

22 − E22)J22 .

4.4 The result

We obtain the matrix

R = R3R2R1 =

(
L+ FG −FR21

−MG MR21

)
.

Here we use the notation
L = (I− I11A

1
12E

T
12)R12R11 ,

M = (I− I21A
2
22E

T
22)R22 ,

F = (A1
11E

T
21 + A2

12E
T
22R22) ,

G = R21(A1
22E

T
12R12 + A21E

T
11)R11 .

A1
12 = R11A12,

A1
21 = A21(I− ET

11H11),
A1

22 = A22 − A21E
T
11A

1
12,

A2
22 = R21A

1
22(I− ET

12H12) ,
A2

12 = H12 + I11A
1
12(I− ET

12H12)−H11E
T
21A

2
22 .

And we obtain the equation RA = H with h-type matrix H which has the main part

E =

(
E11 E12

E21 E22

)
.

4.5 The important particular cases

We can outline two important particular cases.
In the �rst case the matrix A has an invertible block A11 . In this case we obtain H11 =

H22 = R12 = R21 = I, H12 = H21 = E12 = E21 = 0 , A1
22 = A22 − A21A

1
12, A2

22 = R21A
1
22 ,

A2
12 = A1

12 = R11A12 , L = R11 , M = R22 , F = A2
12R22 , G = A21R11 ,

R =

(
R11 +R11A12R22A21R11 −R11A12R22

−R22A21R11 R22

)
.

More over, if matrix A is invertible, then R = A−1 .

1378

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

In the second case the matrix A has zero block A11 = 0 and two invertible blocks A21

and A12 . In this case we obtain H11 = H22 = 0, R11 = R22 = H12 = H21 = I, A1
12 = A12,

A1
21 = A21, A

1
22 = A22, A

2
22 = 0 , A2

12 = H12 , L = R12R11 , M = I , F = 0 , G = R21A22R12 ,

R =

(
R12 0

−R21A22R12 R21

)
.

5 Matrix decomposition in the commutative domain R

The mapping Aext : Rn×n × (R\0)→ (Rn×n)3 × (R\0)

(A, S,E, d) = Aext(M,d0),

with n = 2k we call the extended adjoint mapping of the couple (M,d0) if it recursive de�ned
as follows.

For M = 0 : Aext(M,d0) = (d0I, 0, 0, d0).
For k = 0 and M = a 6= 0 : Aext(a, d0) = (d0, a, a, a).
For k > 0 and M 6= 0 we have to divide matrix M into four equal blocks M = (Mij) ,

i, j ∈ {1, 2}. Let
(A11, S11, E11, d11) = Aext(M11, d0),

we denote

M1
12 = A11M12/d0, M

1
21 = M21Y11/d0, M

1
22 = (M22 −M21E

T
11M

1
12)/d0.

Let
(A12, S12, E12, d12) = Aext(Ī11M

1
12, d11),

(A21, S21, E21, d21) = Aext(M
1
21, d11).

Denote
M2

22 = A21M
1
22Y12/(d11)2, ds = d21d12/d11.

Let
(A22, S22, E22, d22) = Aext(Ī21M

2
22, ds).

Denote

M2
11 = S11Y21/d11, M

2
12 = S12d21 + (I11M

1
12d11d21 − S11E

T
21A21M

1
22)Y12/(d11)2.

M3
12 = M2

12Y12/(dsd11), M3
22 = S22 + I21M

2
22Y12/ds,

L = (Id11 − I11M
1
12E

T
12)A12A11d22/(d11)2,

Q = (Id12d21 − I21M
2
22E

T
22d11)A22/ds,

F = S11E
T
21d22 +M2

12E
T
22A22/ds,

G = A21(M1
22E

T
12A12d0 +M21E

T
11d12d11)A11/(d

2
11d0),

A =

(
(L+ FG/(d11d21)/d12 −FA21/(d11d21)
−QG/(d11d21d12) QA21/(d11d21)

)
,

1379

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

S =

(
M2

11d22/d21 M3
12

S21d22/d21 M3
22

)
, E =

(
E11 E12

E21 E22

)
.

Then
(A, S,E, d22) = Aext(M,d0).

We use here the notations

Iij = EijE
T
ij , Jij = ET

ijEij, Yij = dijI− ET
ijSij, i, j ∈ {1, 2}.

Theorem 3 For arbitrary matrix M ∈ Rn×n the extended adjoint mapping (A, S,E, d) =
Aext(M, 1) de�nds the extended adjoint nonsingular matrix A , the echelon matrix S and the
matrix E , which have the property: AM = S and dE = SJE .

The proof is based on the algorithm with one-sided decomposition of the previous section.
All division operations are based on the determinant identities [4] and give as a result the
quotients which are the elements of the domain R or matrices over the domain R.

Let S be the echelon matrix obtained from the matrix M , S1 = ETS , then ETAM = ETS
and S1JE = dJE . Let us write the matrix S1 in the form S1 = S0 + dJ . It is easy to see that
S2

0 = 0 . Therefore (S0 + dJ)(S0 − dJ̄) = 0 , rank(S0 − dJ̄) = rank(J̄) , rank(S1) = rank(J) ,
so rank(S1) + rank(S0 − dJ̄) = n . That is why the columns of the matrix S0 + dJ̄ generate
the kernel of S1 , therefore they generate the kernel of M .

So we obtain the kernel of M :

kern(M) = span(ETAM − dI).

6 Conclusion

The algorithms for �nding matrix decomposition and matrix inversion are described. These
algorithms have the same complexity as matrix multiplication and do not require pivoting. For
singular matrices they allow to obtain a nonsingular block of the biggest size. These algorithms
may be used in any �eld, including real and complex numbers, �nite �elds and their extensions.
The proposed algorithms are pivot-free, and do not change the matrix block structure. They
are suitable for parallel hardware implementation.

7 Appendix

In this appendix we put the proof of the theorem 1.

Proof of Theorem 1

For the matrix of size 1×1 , when k = 0 , we can write the following LEU decompositions

LU(0) = (1, 0, 1) and LU(a) = (a−1, 1, 1), if a 6= 0.

Let us assume that for any matrix of size n we can write a LEU decomposition and let us
given matrix A ∈ F 2n×2n

I,J has the size 2n . We shall construct a LEU decomposition of matrix
A .

1380

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

First of all we shall divide the matrices A , I , J and a desired matrix E into four equal
blocks:

A =

[
A11 A12

A21 A22

]
, I = diag(I1, I2), J = diag(J1, J2), E =

[
E11 E12

E21 E22

]
, (5)

and denote

Iij = EijE
T
ij , Jij = ET

ijEij ∀i, j ∈ {1, 2}. (6)

Let

(L11, E11, U11) = LU(A11), (7)

denote the matrices

Q = L11A12, B = A21U11, (8)

A1
21 = BJ11, A

1
12 = I11Q, A

1
22 = A22 −BET

11Q. (9)

Let

(L12, E12, U12) = LU(A1
12) and (L21, E21, U21) = LU(A1

21), (10)

denote the matrices

G = L21A
1
22U12, A

2
22 = I21GJ12. (11)

Let us put

(L22, E22, U22) = LU(A2
22), (12)

and denote

W = (GET
12L12 + L21BE

T
11), V = (U21E

T
21GJ12 + ET

11QU12), (13)

L =

(
L12L11 0
−L22WL11 L22L21

)
, U =

(
U11U21 −U11V U22

0 U12U22

)
. (14)

We have to prove that

(L,E, U) = LU(A). (15)

As far as L11, L12, L21, L22 are low triangular nonsingular matrices and U11, U12 , U21 , U22

are upper unitriangular matrices we can see in (10) that the matrix L is a low triangular
nonsingular matrix and the matrix U is upper unitriangular.

Let us show that E ∈ P2n . As far as E11, E12, E21, E22 ∈ Pn and A11 = I1A11J1 , A
1
21 =

BJ11 , A
1
12 = I11Q , A2

22 = I21GJ12 and due to the Sentence 1 we obtain E11 = I11E11J11 ,
E21 = E21J11 , E12 = I11E12 , E22 = I21E22J12 .

Therefore the unit elements in each of the four blocks of the matrix E are disposed in
di�erent rows and columns of the matrix E . So E ∈ P2n , and next identities hold

E11E
T
21 = E11J21 = J11E

T
21 = J11J21 = 0, (16)

ET
12E11 = ET

12I11 = I12E11 = I12I11 = 0, (17)

E12E
T
22 = E12J22 = J12E

T
22 = J12J22 = 0, (18)

ET
22E21 = ET

22I21 = I22E21 = I22I21 = 0. (19)

1381

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

We have to prove, that E = LAU . This equation in block form consists of four block
equalities:

E11 = L12L11A11U11U21;
E12 = L12L11(A12U12 − A11U11V)U22;
E21 = L22(L21A21 −WL11A11)U11U21;
E22 = L22((L21A22 −WL11A12)U12 − (L21A21 −WL11A11)U11V)U22.

(20)

Therefore we have to prove these block equalities.
Let us note, that from the identity A11 = I1A11J1 and Sentence 1 we get

L11 = I11 + I1L11I11, U11 = J11 + J11U12J1. (21)

The Sentence 1 together with equations A1
12 = I11L11A12 , A1

21 = A21U11J11 , A2
22 =

I21L21(A22 − A21U11E
T
11L11A12)U12J12 give the next properties of L- and U- blocks:

L12 = I12 + I11I1L12I12, U12 = J12 + J12U12J2,
L21 = I21 + I2L21I21, U21 = J21 + J21U12J1J11,
L22 = I22 + I21I2L22I22, U22 = J22 + J22U22J2J12.

(22)

The following identities can be easy checked now

L12E11 = E11, L12I11 = I11, (23)

E11U21 = E11, J11U21 = J11, (24)

E12U22 = E12, J12U22 = J12, (25)

L22E21 = E21, L22I21 = I21. (26)

We shall use the following equalities,

L11A11U11 = E11, L12A
1
12U12 = E12, L21A

1
21U21 = E21, L22A

2
22U22 = E22, (27)

which follows from (7),(10) and (12), the equality

E11V = I11QU12, (28)

which follows from the de�nition of the block V in (13), (24), (16) and (6), the equality

WE11 = L21BJ11, (29)

which follows from the de�nition of the block W in (13), (23), (17) and (6).
1. The �rst equality of (20) follows from (27), (23) and (24).
2.The right part of the second equality of (20) takes the form L12(I− I11)QU12U22 due to

(8), (27) and (28). To prove the second equality we use the de�nition of the blocks B and
A1

12 in (8) and (9), then the second equality in (27) and identity (25): L12(I− I11)QU12U22 =
L12A

1
12U12U22 = E12U22 = E12.

3. The right part of the third equality of (20) takes the form L22L21B(I − J11)U21 due to
de�nition of the block B (8), the �rst equality in (27) and (29). To prove the third equality

1382

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

we use the de�nition of the blocks A1
21 in (9), then the third equality in (27) and identity (26):

L22L21BJ11U21 = L22L21A
1
21U21 = L22E21 = E21 .

4. The identity

ET
12L12 = ET

12L12(I11 + I11) = ET
12L12I11 (30)

follows from (23) and (17).

We have to check that (L21A22 −WL11A12)U12 = (L21A22 − (GET
12L12 +L21BE

T
11)Q)U12 =

L21(A22−BET
11Q)U12−GET

12L12QU12 = L21A
1
22U12−GET

12L12I11QU12 = G−GET
12L12A

1
12U12 =

G−GET
12E12 = GJ12 , using the de�nitions of the blocks W in (13), A1

22 and A1
12 in (9), the

identity (28), the second equality in (27) and the de�nition (6).

We have to check that −(L21A21−WL11A11)U11V = −(L21A21U11−WE11)V = (−L21B+
L21BJ11)V = −L21BJ11V = −L21BJ11(U21E

T
21GJ12 + ET

11QU12) = −L21A
1
21U21E

T
21GJ12 =

−I21GJ12 , using the �rst equality in (27), the identity (29), the de�nitions of the blocks V in
(13), (1), then the third equality in (27) and de�nition (6).

To prove the forth equality we have to substitute obtained expressions to the right part of
the fourth equality:

L22(GJ12 − I21GJ12)U22 = L22I21GJ12U22 = L22A
2
22U22 = E22.

For the completion of the proving of this theorem we have to demonstrate the special form
of the matrices U and L : L− IE ∈ FI,IE and U − JE ∈ FJE ,J .

The matrix L is invertible and IE < I therefore we have to prove that L = IE + ILIE ,
where IE = diag(I11 + I12, I21 + I22) , IE = diag(I11I12, I21I22) , I = diag(I1, I2) .

This matrix equality for matrix L (14) is equivalent to the four block equalities:

L12L11 = I1L12L11(I11 + I12) + I11I12, 0 = I10(I21 + I22),

−L22WL11 = −I2L22WL11(I11 + I12), L22L21 = I2L22L21(I21 + I22) + I21I22.

To prove the �rst block equalities we have to multiply its left part by the unit matrix in the
form I = (I1 + I1) from the left side and by the unit matrix in the form I = (I11 + I12) + I11I12

from the left side. Then we use the following identities to obtain in the left part the same
expression as in the right part: L11I11 = I11 , L12I12 = I12 , I1L12L11 = I1 , I1(I11 + I12) = 0 .
The same idea may be used for proving the last block equality, but we must use other forms of
unit matrix: I = (I2 + I2) , I = (I21 + I22) + I21I22 .

The second block equality is evident.

Let us prove the third block equality. We have to multiply the left part of the third block
equality by the unit matrix in the form I = (I2 + I2) from the left side and by the unit matrix
in the form I = (I11 + I12) + I11I12 from the right side.

The block W is equal to the following expression by the de�nition (13), (11) and (8):

W = (L21(A22 − A21U11E
T
11Q)U12E

T
12L12 + L21A21U11E

T
11).

We have to use in the left part the equations I2L22 = I2 , I2L21 = I2 , I2A22 = 0 , I2A21 = 0 ,
and L11I11 = I11 , L12I12 = I12 , E

T
12I12 = 0 , ET

11I11 = 0 .

The property of the matrix U : U − JE ∈ FJE ,J may be proved in the same way as the
property of the matrix L .

1383

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

References

1. Grigoriev D. Analogy of Bruhat decomposition for the closure of a cone of Chevalley group
of a classical serie // Soviet Math. Dokl.1981. V. 23. N. 2. P. 393-397.

2. Bunch J., Hopkroft J. Triangular factorization and inversion by fast matrix multiplication
// Mat. Comp. 1974. V. 28. P. 231-236.

3. Malaschonok G.I. E�ective Matrix Methods in Commutative Domains // Formal Power
Series and Algebraic Combinatorics. Berlin: Springer, 2000. P. 506-517.

4. Malaschonok G.I. Matrix computational methods in commutative rings. Tambov: Tambov
State University, 2002.

5. Akritas A., Malaschonok G. Computation of Adjoint Matrix // Fourth International
Workshop on Computer Algebra Systems and Applications (CASA 2006), LNCS 3992.
Berlin: Springer, 2006. P. 486-489.

6. Watt S.M. Pivot-Free Block Matrix Inversion. Maple Conference 2006, July 23-26,
Waterloo, Canada. 2006. URL: http://www.csd.uwo.ca/ watt/pub/reprints/2006-mc-
bminv-poster.pdf.

7. Watt S.M. Pivot-Free Block Matrix Inversion // Proc 8th International Symposium on
Symbolic and Numeric Algorithms in Symbolic Computation (SYNASC), IEEE Computer
Society. 2006. P. 151-155.

8. Eberly W. E�cient parallel independent subsets and matrix factorization // 3rd IEEE
Symposium on Parallel and Distributed Processing. Dallas, USA, 1991. P. 204-211.

9. Kaltofen E., Pan V. Processor-e�cient parallel solution of linear systems over an abstract
�eld // 3rd Annual ACM Symposium on Parallel Algorithms and Architectures. ACM
Press, 1991. P. 180-191.

10. Kaltofen E., Pan V. Processor-e�cient parallel solution of linear systems II: The general
case // 33rd IEEE Symposium on Foundations of Computer Science. Pittsburgh, USA,
1992. P. 714-723.

11. Kaltofen E., Pan V. Parallel solution of Toeplitz and Toeplitz-like linear systems over �elds
of small positive characteristic // PASCO 94: First International Symposium on Parallel
Symbolic Computation, World Scienti�c Publishing, 1994. P. 225-233.

12. Grigoriev D. Additive complexity in directed computations // Theoretical Computer
Science. 1982. V. 19. P. 39-67.

13. Kolotilina L.Yu. Sparsity of Bruhat decomposition factors of nonsingular matrices // Notes
of Scienti�c Seminars of LOMI. 1992. V. 202. P. 5-17.

1384

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

14. Kolotilina L.Yiu, Yeremin A.Yu. Bruhat decomposition and solution of linear algebraic
systems with sparse matrices // Sov. J. Numer.Anal. and Math. Model. 1987. V. 2. P.
421-436.

15. Malaschonok G.I. Parallel Algorithms of Computer Algebra // Materials of the conference
dedicated for the 75 years of the Mathematical and Physical Dep. of Tambov State
University. (November 22-24, 2005). Tambov: TSU, 2005. P. 44-56.

16. Malaschonok G.I., Zuyev M.S. Generalized algorithm for computing of inverse matrix //
11-th conference "Derzhavinskie Chtenia". February 2-6, 2006. Tambov: TSU, 2006. P.
58-62.

17. Malaschonok G.I. On computation of kernel of operator acting in a module // Tambov
University Reports. Natural and Technical Sciences. 2008. V. 13. Issue 1. P. 129-131.

18. Strassen V. Gaussian Elimination is not optimal // Numerische Mathematik. 1969. V. 13.
P. 354-356.

GRATITUDES: Supported by the Sci. Program Devel. Sci. Potent. High. School, RNP
2.1.1.1853.

Accepted for edition 7.06.2010.

ÁÛÑÒÐÎÅ ÌÀÒÐÈ×ÍÎÅ ÐÀÇËÎÆÅÍÈÅ Â ÏÀÐÀËËÅËÜÍÎÉ
ÊÎÌÏÜÞÒÅÐÍÎÉ ÀËÃÅÁÐÅ

c© Ãåííàäèé Èâàíîâè÷ Ìàëàøîíîê
Òàìáîâñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò èì. Ã.Ð. Äåðæàâèíà, Èíòåðíàöèîíàëüíàÿ, 33,

Òàìáîâ, 392000, Ðîññèÿ, äîêòîð ôèçèêî-ìàòåìàòè÷åñêèõ íàóê, ïðîôåññîð êàôåäðû
ìàòåìàòè÷åñêîãî àíàëèçà, e-mail: malaschonok@ya.ru

Êëþ÷åâûå ñëîâà: áûñòðûå àëãîðèòìû; ìàòðè÷íîå ðàçëîæåíèå; ïàðàëëåëüíûå àëãî-
ðèòìû; êîìïüþòåðíàÿ àëãåáðà.
Ïðåäëîæåíû íîâûå àëãîðèòìû äëÿ âû÷èñëåíèÿ ìàòðè÷íîãî ðàçëîæåíèÿ è äëÿ âû-
÷èñëåíèÿ îáðàòíîé ìàòðèöû â ñëó÷àå ìàòðèö íàä ïðîèçâîëüíûìè ïîëÿìè. Äëÿ
êîììóòàòèâíûõ îáëàñòåé ïðåäëîæåí àëãîðèòì âû÷èñëåíèÿ ïðèñîåäèíåííîé ìàòðè-
öû. Ýòè àëãîðèòìû èìåþò ñëîæíîñòü ìàòðè÷íîãî óìíîæåíèÿ è íå òðåáóþò ïîèñêà
âåäóùåãî ýëåìåíòà è âûïîëíåíèÿ ïåðåñòàíîâîê ýëåìåíòîâ ìàòðèö. Äëÿ âûðîæäåí-
íûõ ìàòðèö îíè ïîçâîëÿþò íàõîäèòü íåâûðîæäåííûé áëîê íàèáîëüøåãî ðàçìå-
ðà. Ïðåäëàãàåìûå àëãîðèòìû íå òðåáóþò ïèëîòèðîâàíèÿ è íå ìåíÿþò ìàòðè÷íóþ
áëî÷íóþ ñòðóêòóðó. Ýòè àëãîðèòìû ïîçâîëÿþò ðàçðàáàòûâàòü ñîîòâåòñòâóþùèå
ïàðàëëåëüíûå ïðîãðàììû.

1385

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

UDC 519.688

A PARALLEL ALGORITHM FOR SYMBOLIC SOLVING PARTIAL
DIFFERENTIAL EQUATIONS

c© Natalia Aleksandrovna Malaschonok
Tambov State University named after G.R. Derzhavin, Internatsionalnaya, 33, Tambov,

392000, Russia, Candidate of Physics and Mathematics, Associate Professor of Mathematical
Analysis Department, e-mail: namalaschonok@gmail.com

Key words: parallel algorithms; computer algebra; partial di�erential equations;
Laplace�Carson transform; compatibility conditions.
A parallel algorithm for symbolic solving partial di�erential equations by means of
Laplace�Carson transform is produced. The problem is reduced to solving linear
algebraic systems with polynomial coe�cients, for which e�cient parallel algorithms
exist. It permits to construct a fast parallel algorithm for systems of partial di�erential
equations. An algorithm includes a procedure to obtain compatibility conditions for
initial data.

1 Introduction

An application of Laplace and Laplace�Carson transform is useful in many problems of solving
di�erential equations (for example [1, 2, 3, 4]) It reduces a system of partial di�erential equations
to an algebraic linear system with polynomial coe�cients. Parallel algorithms for solving such
systems are being developed actively (for example, [5, 6]). It enables to construct parallel
algorithms for solving linear partial di�erential equations with constant coe�cients and systems
of equations of various order, size and types. The application of Laplace�Carson transform
permits to obtain compatibility conditions in symbolic way for many types of PDE equations
and systems of PDE equations.

The steps, at which parallel calculations are possible and reasonable we denote by term
Block. If indexes are contained, the ways of parallelization are pointed by them.

2 Input data

Denote m̃ = (m1, . . . ,mn) . Consider a system

K∑
k=1

M∑
m=0

∑
m̃

ajm̃k
∂m

∂m1x1 . . . ∂mnxn
uk(x) = fj(x), (1)

where j = 1, . . . , K, uk(x) , k = 1, . . . , K, � are unknown functions of x = (x1, . . . , xn) ∈ Rn
+ ,

fj ∈ S , ajm̃k are real numbers, m is the order of a derivative, and k �the number of an unknown
function. Here and further summing by m̃ = (m1, . . . ,mn) is executed for m1 + . . .+mn = m .

We consider all input functions reducible to the form;
fj(t) = f ij(x), xij < t < ti+1

j , i = 1, . . . , Ij, x
1
l = 0, t

Ij+1
j =∞,

1386

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

where

f ij(t) =

Sij∑
s=1

P i
js(t)e

bijst, i = 1, . . . , Ij, j = 1, . . . , k, (2)

and P i
js(x) =

∑Lijs
l=0 c

ji
slx

l .
Denote by A a class of functions which are reducible to the form (2).
We solve a problem with initial conditions for each variable. Introduce notations for them.

Denote by Γν a set of vectors γ = (γ1, . . . , γn) such that γν = 1 , γi = 0 , if i < ν , and γi
equals 0 or 1 in all possible combinations for i > ν . The number of elements in Γν equals
2ν−1 .

Denote β = (β1, . . . , βn), βi = 0, . . . ,mi , a set of indexes such that the derivative of u
k(x)

of the order βi with respect to the variables with numbers i equals ukβ,γ(x
(γ)) at the point

x = xγ with zeros at the positions µ for which the coordinates γµ of γ equal 1 . For example,
if zeros stand only at the places with the numbers 1, 2, 3 , then γ = (1, 1, 1, 0, . . . , 0) . Functions
ukβ,γ(x

(γ)) must also belong to A . To be short we shall not write down the expressions for

ukβ,Γ(x(γ)) .
The algorithm component is the de�nition of compatible initial conditions. The system (1)

is to be solved under such conditions.
Data �le contains the coe�cients, the initial conditions and the right-hand members fj ,

l = 1, . . . , K .
The data for functions fj consists of the polynomial coe�cients, parameters of exponents,

the bounds of smoothness intervals.

3 Laplace�Carson transform

Consider the space S of functions f(x) , x = (x1, . . . , xn) ∈ Rn
+ , Rn

+ = {x : xi > 0, i =
1, . . . , n} , for which M > 0, a = (a1, . . . , an) ∈ Rn , ai > 0 , i = 1, . . . , n , exist such that for

all x ∈ Rn
+ the following is true: |f(x)| 6Meax , ax =

n∑
i=1

aixi .

On the space S the Laplace�Carson transform (LC) is de�ned as follows:

LC : f(x) 7→ F (p) = p1

∫ ∞
0

e−pxf(x)dx,

p = (p1, . . . , pn), p1 = p1 . . . pn,

px =
n∑
i=1

pixi, dx = dx1 . . . dxn.

LC is performed symbolically at the class A .

4 Parallel LC algorithm

4.1 LC of a system

Let LC : uk 7→ Uk, ukβ,γ(x
(γ)) 7→ Uk

β,γ(p
(γ)), fj 7→ Fj , the notation p(γ) is correspondent to the

notation x(γ) . Denote by ‖γ‖ the �length� of γ � the number of units in γ , pm̃ = pm1
1 . . . pmnn .

1387

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Block 10
The LC of the left-hand side of the system (1) excluding images of initial conditions is

written formally.

Block 1r
r runs trough the set of multiindexes of ukβ,Γ(xΓ) .

Then

LC :
∂m

∂m1x1 . . . ∂mnxn
uk(x) 7→

pm̃Uk(p) +
n∑
ν=1

mν∑
βν=0

∑
γ∈Γν

(−1)‖γ‖pm1−β1−γ1

1 . . . pmn−βn−γnn Uk
β,γ(p

(γ)).

Denote

Φj
mk =

∑
m̃

ajm̃k

n∑
ν=1

mν∑
βν=0

∑
γ∈Γν

(−1)‖γ‖pm1−β1−γ1

1 . . . pmn−βn−γnn Uk
β,γ(p

(γ)).

As a result of Laplace�Carson transform of the system (1) according to initial conditions
we obtain an algebraic system relative to Uk

K∑
k=1

M∑
m=0

∑
m̃

ajm̃kp
m̃Uk(p) = Fj −

K∑
k=1

M∑
m=0

Φj
mk, j = 1, . . . , K. (3)

Block 2k
k runs from 1 to K .

These blocks performs LC of the right-hand parts of (1). A allows a further parallelization
of calculations.

4.2 Solution of algebraic system

Block 3
As a result of Laplace�Carson transform of the system (1) according to initial conditions

we obtain the algebraic system (3) relative to Uk .
E�cient methods of parallel solving such systems are developed (for example [5, 6]).
At this stage the problem of de�nition of compatibility conditions arises (see blocks 4s,5).

With respect to compatible conditions we use the inverse Laplace�Carson transform and obtain
the correct solution of PDE system.

4.3 Compatibility conditions

Call a rational fraction "a proper fraction" if the degree of each variable (over C) in numerator
is less then its degree in denominator.

Call a set of equations, de�ned by conditions
• the solutions of algebraic system may be represented as sums of proper fractions with

exponential coe�cients;

1388

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

• the denominators of these proper fractions may be reduced to a product of linear
functions.
the class B.

(Note that the class B does not exhaust all cases that admit pure symbolic computations.)
Denote by D the determinant of the system (3), Di the maximal order minors of the

extended matrix of (3). A case when there is a set Q of zeros of D with in�nite limit point
at Re pk > 0 , k = 1, . . . , n , is of most interest. Solving the system (1) we obtain Uk as
fractions with D in the denominators. The inverse Laplace�Carson transform is possible if αk ,
k = 1, . . . , n , exist such that these functions are holomorphic in the domain Re pk > αk . So we
make a demand: Di has zeros at Q of multiplicity not less than multiplicity of corresponding
zeros of D . This demand produces requirements to the LC images of initial conditions functions,
and after LC −1 transform � to initial conditions. They turn to be dependent. We obtain the
so-called compatibility conditions.

Block 4s
s depends upon the number of relations, from which the compatibility conditions arise.

The blocks calculate the values of numerators at zeros of denominators.

Block 5

The block implements parallel solving of the system of equations, produced by relations for
compatibility conditions.

Block 6k

The blocks perform the LC −1 of Uk . Note, that the steps of calculation of multivariate
LC −1 are produced sequentially.

5 Example

We take a simple example to demonstrate the method and the places where parallelization is
possible.

It is convenient here to change notations for unknown functions, their Laplace transform,
variables, initial conditions.

Example 1
Take a system of two equations with two unknown functions on R2

+ .{
∂f
∂x

+ ∂g
∂y

= x,
∂f
∂y

+ ∂g
∂x

= y,

f = f(x, y); g = g(x, y) .
Initial conditions: f(0, y) = a(y); f(x, 0) = b(x); g(0, y) = c(y); g(x, 0) = d(x),

1389

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Block 1r , r=1,2.

a(y) 7→ α(q), b(x) 7→ β(p),

c(y) 7→ δ(q), d(x) 7→ γ(p).

Block 2k , k=1,2.
LC:

f(x, y) 7→ u(p, q), g(x, y) 7→ v(p, q).

As a result of LC we obtain the algebraic system:

pu− pα(q) + qv − qγ(p) = 1/p, qu− qβ(p) + pv − pδ(q) = 1/q.

Block 3
Then

u = −−αp
2 + βq2 + (δ − γ)pq

p2 − q2
, v = −−p

2 + q2 + (α− β)p2q2 − (δp2 − γq2)pq

pq(p2 − q2)
.

The denominator D : D(p, q) = pq(p2 − q2).

Block 4s , s=1.
The set of zeros of D with in�nite limit points at the right half-plane is q = p .
Substituting q = p into the nominator of u and v we obtain the compatibility condition:

α− β + γ − δ = 0.

Block 5
For example we may take β = 0; γ = 2

p
; δ = 2

q
; α = 0.

Then

u = − 2

p+ q
, v = −p+ 2p2 + q + 2q2 + 2pq

pq(p+ q)
.

Block 6s , s=1,2.
LC−1 :

f = −
{

2y, y < x,
2x, y > x,

g =

{
(2 + y)x, y < x,
y(2 + x), y > x.

References

1. Dahiya R.S., Jabar Saberi-Nadja�. Theorems on n-dimensional Laplace transforms and their
applications // 15th Annual Conf. of Applied Math., Univ. of Central Oklahoma, Electr.
Journ. of Di�erential Equations, Conf.02. 1999. P. 61-74.

2. Dimovski I., Spiridonova M. Computational approach to nonlocal boundary value problems
by multivariate operational calculus // Mathem. Sciences Research Journal. Dec. 2005. V. 9.
N. 12. P. 315-329.

1390

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

3. Malaschonok N. An algorithm for symbolic solving of di�erential equations and estimation
of accuracy // Computer Algebra in Scienti�c Computing. CASC 2009, Springer-Verlag
Berlin Heidelberg, 2009. P. 213-225.

4. Picone M. Nuovi metodi risolutivi per i problemi d'integrazione delle equazioni lineari a
derivate parziali e nuova applicazionne della trasformata multipla di Laplace nel caso delle
equazioni a coe�cienti costanti // Atti Accad.Sci.Torino,75. 1940. P. 1-14.

5. Watt S.M. Pivot-Free Block Matrix Inversion, Proc 8th International Symposium on
Symbolic and Numeric Algorithms in Symbolic Computation (SYNASC), IEEE Computer
Society, 2006. P. 151-155. URL: http://www.csd.uwo.ca/ watt/pub/reprints/2006-synasc-
bminv.pdf.

6. Malaschonok G.I. Parallel Algorithms of Computer Algebra // Materials of the conference
dedicated for the 75 years of the Mathematical and Physical Dep. of Tambov State
University. (November 22-24, 2005). Tambov: TSU, 2005. P. 44-56.

GRATITUDES: Supported by the Sci. Program Devel. Sci. Potent. High. School, RNP
2.1.1.1853.

Accepted for publication 7.06.2010.

ÏÀÐÀËËÅËÜÍÛÉ ÀËÃÎÐÈÒÌ ÑÈÌÂÎËÜÍÎÃÎ ÐÅØÅÍÈß
ÄÈÔÔÅÐÅÍÖÈÀËÜÍÛÕ ÓÐÀÂÍÅÍÈÉ Ñ ×ÀÑÒÍÛÌÈ

ÏÐÎÈÇÂÎÄÍÛÌÈ

c© Íàòàëèÿ Àëåêñàíäðîâíà Ìàëàøîíîê
Òàìáîâñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò èì. Ã.Ð. Äåðæàâèíà, Èíòåðíàöèîíàëüíàÿ, 33,

Òàìáîâ, 392000, Ðîññèÿ, êàíäèäàò ôèçèêî-ìàòåìàòè÷åñêèõ íàóê, äîöåíò êàôåäðû
ìàòåìàòè÷åñêîãî àíàëèçà, e-mail: malaschonok@ya.ru

Êëþ÷åâûå ñëîâà: ïàðàëëåëüíûå àëãîðèòìû, êîìïüþòåðíàÿ àëãåáðà, óðàâíåíèÿ â
÷àñòíûõ ïðîèçâîäíûõ, ïðåîáðàçîâàíèå Ëàïëàñà�Êàðñîíà, óñëîâèÿ ñîãëàñîâàííî-
ñòè.
Ïðåäñòàâëåí ïàðàëëåëüíûé àëãîðèòì ñèìâîëüíîãî ðåøåíèÿ ñèñòåìû óðàâíåíèé
ñ ÷àñòíûìè ïðîèçâîäíûìè ñ ïîìîùüþ ïðåîáðàçîâàíèÿ Ëàïëàñà�Êàðñîíà. Çàäà÷à
ñâîäèòñÿ ê ðåøåíèþ ëèíåéíîé àëãåáðàè÷åñêîé ñèñòåìû ñ ïîëèíîìèàëüíûìè êî-
ýôôèöèåíòàìè, äëÿ êîòîðîé ñóùåñòâóþò áûñòðûå ïàðàëëåëüíûå àëãîðèòìû. ýòî
ïîçâîëÿåò ñêîíñòðóèðîâàòü áûñòðûé ïàðàëëåëüíûé àëãîðèòì äëÿ ñèñòåì äèôôå-
ðåíöèàëüíûõ óðàâíåíèé ñ ÷àñòíûìè ïðîèçâîäíûìè. Ñîñòàâíîé ÷àñòüþ àëãîðèòìà
ÿâëÿåòñÿ ïðîöåäóðà ïîëó÷åíèÿ óñëîâèé ñîãëàñîâàííîñòè äëÿ íà÷àëüíûõ óñëîâèé.

1391

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

UDC 5519.852+681.142

EXACT AND GUARANTEED ACCURACY SOLUTIONS
OF LINEAR PROGRAMMING PROBLEMS

BY DISTRIBUTED COMPUTER SYSTEMS WITH MPI

c© Anatoliy Vasilyevich Panyukov
South Ural State University, 76 Lenina Ave., Chelyabinsk, 454080, Russia, Doctor of Physics
and Mathematics, Professor, Head of Economical and Mathematical Methods and Statistics

Department, e-mail: a_panykov@mail.ru

c© Vasiliy Vladimirovich Gorbik
South Ural State University, 76 Lenina Ave., Chelyabinsk, 454080, Russia, Post-graduate

Student of Economical and Mathematical Methods and Statistics Department,
e-mail: gorbik@gmail.com

Key words: linear programming; tabular simplex method; distributed computing;
parallel optimization; rational computations; arbitrary precision; interval arithmetic.
Techniques of obtaining both exact and guaranteed accuracy solutions of linear
programming problems and methods of increasing accuracy of computations by
distributed computer systems with MPI are subjects of this paper. To obtain the
solutions the rational and arbitrary precision �oating point interval arithmetic libraries
are applied. Methods of adaptation of the used data types to MPI are presented. Results
of computational experiments based on introduced parallel versions of algorithms for
solving systems of linear equations and linear programming problems demonstrate
e�ectiveness of their application.

1 Introduction

Unsubstantiated prejudices, causing errors of calculations are widespread. Some of them are: (1)
distributing property of associativity of addition and multiplication in the �eld of real numbers
to a �nite set of machine �real� numbers; (2) extension of properties of continuous dependence
on parameters of solutions of the system received after the �equivalent� changes to the original
system. Calculations that ascribe non-existing properties to objects of the numerical analysis,
are unproved. Popular commercial packages MatLab, MathCad, etc., and also free package
SciLab have the marked disadvantages. Usage of di�erent number of processors in calculations
in many cases gives substantially di�erent results, demonstrating the need for evidence-based
computing. The potential of available packages supporting symbolic computations does not
allow to solve the real problems of mathematical modeling. For the means of arbitrary precision
computations GMP library can be used. But GMP library does not provide any interface for
using it in parallel computations.

The aim of this work is implementation of exact rational and guaranteed arbitrary precision
�oating point interval computations software for parallel and distributed computing systems
with MPI (Message Passing Interface[1]). The paper covers the usage of mpq_t and mpf_t

1392

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

data types from the GNU MP library [2], and mp�_t interval type from MPFI library
[3](that is built on the top of GNU MP). An important aspect here is the possibility and
e�ectiveness of adaptation of these types to a multiprocessor environment. MPI interface is an
uno�cial standard for building distributed computing systems for a long time. Serialization
and rearrangement to sequential memory layout of rational and interval arithmetic objects for
MPI integration are considered in this paper. We chose GNU MP library for the purposes of
exact computations because it is an open source solution available in all widespread GNU/Linux
distributions and has a good performance. MPFI library is also an open source project and
extends GNU MP; adding interval calculations on top of arbitrary precision �oating point data
types.

2 Accuracy of Computations

The GNU MP package contains open source GNU MP library for arbitrary precision arithmetic:
operations on signed integers, rational numbers and �oating-point numbers. GNU MP library is
developed for fast operation on both large and small operands. It is fast because it uses whole
words as the base type, applies fast algorithms, depending on the size of the operands. It has
the optimized assembly code for many types of processors and combines speed with simplicity
and elegance of operations.

2.1 Exact Computations with mpq_t Type

// FILE : gmp . h
// De f i n i t i on o f mpq_t
#ifde f __GMP_SHORT_LIMB

typedef unsigned int mp_limb_t ;
#else

#i fde f _LONG_LONG_LIMB
typedef unsigned long \

long int mp_limb_t ;
#else

typedef unsigned long \
int mp_limb_t ;

#endif

#endif

typedef struct

{
int _mp_alloc ;
int _mp_size ;
mp_limb_t ∗_mp_d;

} __mpz_struct ;

typedef struct

{
__mpz_struct _mp_num;
__mpz_struct _mp_den ;

} __mpq_struct ;

typedef __mpq_struct mpq_t [1] ;

Fig. 1. Declaration of mpq_t type

By the means of mpq_t type exact calculations with rationals are implemented, mpq_t type
is based on structures and functions of C library, numerator and a denominator are mpz_struct
structures which contain:

• size of allocated memory;

• size of occupied memory;

• pointer to an array representing number.

1393

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Code fragment on �gure 1 shows mpq_t type declaration.
GNU MP library contains about 40 functions for mpq_t type. Besides it is possible to apply

any integers functions to its numerator and denominator separately.

2.1.1 Adaptation of mpq_t Type to MPI

E�ective transmission of mpq_t type for MPI environment can be carried out by the means of
incomplete serialization. Details of implementation and e�ciency estimation are presented in
the previous papers [4], [5].

2.2 Arbitrary Precision Floating Point and Interval Computation

In a case when problem has such a scale that it is impossible to use exact computations
with rational types, and inaccuracy of solution with hardware �oating-point data types
fall outside of admissible limits we can use arbitrary precision �oating point data types.
E�ective implementations of such derivative data types, unlike rational, are comparable to the
computation time with hardware �oating point (with similar length of a mantissa). One of such
data types is mpf_t (multiple precision �oating-point). It allows dynamically arbitrary change
accuracy (the length of mantissa). But computations with mpf_t data type are approximate,
and inaccuracy is not considered. Data type mpf_t can be used in algorithms when result
veri�cation procedure exists allowing to measure inaccuracy and repeat algorithm from some
step with more precision if necessary.

Fig. 2. Structure of mp�_t type

Fig. 3. Structure of mpf_t type

For the means of guaranteed solution one can use data mp�_t type (from the multiple
precision �oating-point interval library [3]). The mp�_t library is based on GNU MP and mpfr
(multiple-precision �oating point with correct rounding library [6]). Instead of single �oating
point a number in mp� is represented by a pair of arbitrary precision �oating point values (of
mpfr type), they represent lower and upper interval bounds enclosing real value. Unlike mpf,
mp� allows to obtain guaranteed (due to usage of interval calculations) and accurate results
(due to arbitrary precision and correct rounding according standard IEEE 754, implemented in
mpfr). On �gures 2 and 3 structures of data types mp�_t and mpf_t (for 64-bit architectures)
are shown.

1394

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

2.2.1 Adaptation of mp�_t and mpf_t Data Types to MPI

The complexity of e�ective MPI adaptation of derived types with dynamic sizes exist because
MPI doesn't provide any interface for passing data types that (1) don't have sequential memory
layout or (2) have variable length that could be changed multiple times at runtime. Mantissas of
mp�_t and mpf_t data types are stored out of base structure. In mpf_t structure �eld _mp_d
points to mantissa. In a case of mp�_t �eld _mpfr_d pointers of _mpfr structures points to the
second elements of the allocated memory blocks (the beginning of mantissa), the current length
of mantissa is stored in the �rst element. Thus, the data can have random memory locations,
and it is impossible to de�ne MPI data type on top of mp�_t and mpf_t types. But still we
can perform e�ective transmission in two ways:

• incomplete serialization;

• rearrangement to sequential memory layout.

In case of incomplete serialization it is enough packing of the necessary structure �elds that
have been painted over at �gures 4 and 5.

Fig. 4. Serialization of mp�_t type

Fig. 5. Serialization of mpf_t type

Depending on the algorithm, if the receiver is not aware of the data types precision of the
sender, _mpfr_prec,_mp_prec �elds should be also serialized and transfered. In some cases,
only _mp_size elements of the mantissa array may be transfered (in the general case _mp_size
is equal to the total length _mp_prec).

This approach has obvious disadvantage, that in fact we have to implement the MPI transfer
functions by transferring array of bytes (in case of incomplete mantissa transfer - array of bytes
previously unknown size), and in case of collective communication it's not always an easy task
itself.

2.2.2 Memory Layout Rearrangement for mp�_t and mpf_t

This approach makes sense in the case when the algorithm operates on the numbers with
precision, that is not changed during the computations. Using the macros shown on �gure 6,we
can de�ne the derived types mp�n_t and mpfn_t based on mp�_t and mpf_t.

Obviously, the structure of types mp�n_t and mpfn_t, as well as arrays of objects of these
types will be allocated in memory sequentially (not including alignment). In this case, all
operations (except for initialization and precision set) that are available for mp�_t (mpf_t),
may be applied to mp�n_t (mpfn_t) without any restrictions. Initialization procedure is not

1395

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

#define mpfi_type (prec) \
typedef struct \
{ \

__mpfr_struct l e f t ; \
__mpfr_struct r i g h t ; \
mp_limb_t \

_mp_d_left [L(prec)+ 1] ; \
mp_limb_t \

_mp_d_right [L(prec)+1] ; \
} __mpfi_struct##prec ; \
typedef __mpfi_struct##prec \
mpfi##prec##_t [1] ; \
MPI_Datatype MPI_mpfi##prec ;

#define mpf_type (prec) \
typedef struct \
{ \

int _mp_prec ; \
int _mp_size ; \
mp_exp_t _mp_exp ; \
mp_limb_t ∗_mp_d; \
mp_limb_t \

_mp_d_real [L(prec)+ 1] ; \
} __mpf_struct##prec ; \
typedef __mpf_struct##prec \
mpf##prec##_t [1] ; \
MPI_Datatype MPI_mpf##prec ;

Fig. 6. Declaration of mp�n_t and mpfn_t types macros

fundamentally di�erent from the original. Instead of memory allocation for mantissa simple
initialization of pointers left._mpfr_d and right._mpfr_d (_mp_d) with relevant addresses of
mantissa is required (which o�set is now constant).

The signi�cant positive factor of this approach is possibility easily declare theMPI data type
on top of mp�n_t and mpfn_t types (for any given accuracy), and use all functions available
for MPI-derived data types without any restrictions.

Fig. 7. Fields of mp�_t structure included in

MPI data type

Fig. 8. Fields of mpf_t structure included in

MPI data type

Fig. 7 and 8 show mp�n_t and mpfn_t data types structures in terms of MPI (for 64-
bit architectures). If one declares MPI data type in a way as shown on �g. 7 and 8 skipping
non-colored �elds, the pointer to the mantissa won't be rewritten during data receive and no
adjustments or additional steps need to be carried out during transfer at all.

Another question is memory layout rearrangement e�ects for performance. Table 1 shows
a comparison of cache misses for initial and modi�ed types. The comparison was made on
the processor with 2 MB second-level cache (32 KB �rst-level) by solving the system of lineal
equations by Gauss-Jordan elimination (30 equations and 192 bit mantissa precision).

1396

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Table 1

Cache miss test for initial and modi�ed types

mp� mp�n mpf mpfn
I refs: 43366674 41850711 13762859 13601951
I1 misses: 23822 21566 10938 10205
L2i misses: 3456 3447 3236 3228
D refs: 18095665 17450618 5076607 5012224
D1 misses: 84427 65950 46662 38923
L2d misses: 13121 12126 9886 9646
L2 refs: 108249 87516 57600 49128
L2 misses: 16577 15573 13122 12874

Test shows that modi�ed types has better cache-hit rate than original. But in closer look on
speci�c functions it turns out that the cache hit rate is better only for functions like comparison,
addition, subtraction, etc., but somewhat worse for multiplication and division. There is a
slight superiority of the original data types under increasing problem size to 3000 equations
and mantissa precision to 1024-2048 bit.

3 Parallel Simplex Method

Simplex-method application for real-world linear program problems keeps beyond comparison in
spite of appearance of polynomial algorithms [7]. At present two techniques of simplex-method
software engineering are in use:

• tabular simplex-method;

• inverse pivotal matrix method (revised simplex-method).

Preserve generality let us demonstrate its characteristic property with an example linear
programming problem

max
{
cTx : Ax = b > 0, x > 0

}
. (1)

3.1 Tabular simplex-method

On k -th iteration it re-counts the simplex table

z(k) = −cT + cTB(k)B(k)−1A cTB(k)B(k)−1b

S(k) = B(k)−1A x(k) = B(k)−1b

,

here B(k) is the pivotal matrix containing matrix A columns related to the basic variables,
cB(k) is criterion function coe�cient vector related to the basic variables. At that right simplex
table column contains vector x(k) = B(k)−1b of the basic variable values, and the criterion
function value cTB(k)B(k)−1b for current solution. The upper row contains vector z(k) = −cT +

1397

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

cTB(k)B(k)−1 of relative evaluation replacement for nonbasic variables. Test for optimality of the
current basic solution is nonnegativity of vector z .

If optimality test no passed then there is nonbasic variable xi : z
(k)
i < 0 . Let us introduce

set L = {l : S
(k)
li > 0} . If L = ∅ then the criterion function is unbounded. Otherwise incoming

of xi to basic variables leads to criterion function increment

∆i = −x
(k)
l∗ · z

(k)
i

S
(k)
l∗i

, (2)

here

l∗ = arg min
l∈L

x
(k)
l

S
(k)
li

de�nes the variable outgoing from basic ones.
Conversion from k -th iteration simplex table to (k+ 1) -th one is realized by Gauss-Jordan

elimination for i -th column of the current simplex table. Principal computation capacity is
block S converting that requires Θ(mn) algebraic operations (m is number of rows, n is
number of columns of matrix A).

3.2 Inverse pivotal matrix method

On k -th iteration it re-counts matrix B(k)−1 that requires Θ(m2) algebraic operations
(m < n). At that for each iteration it is necessary

• to compute basic variables value x(k) = B(k)−1b (Θ(m2) algebraic operations);

• to compute dual variables value yT = cTB(k)B(k)−1 (Θ(m2) algebraic operations);

• to check permissibility of the dual solution cT 6 yTA (no more O(mn) algebraic
operations).

If the dual problem is impressible there is nonbasic variable xi : z
(k)
i = −cTi + yTAi < 0 . If

set L = {l : S
(k)
li > 0} = ∅ , where S(k)

i = B(k)−1Ai then the criterion function is unbounded.
Otherwise incoming of xi to basic variables leads to criterion function increment de�ned by
formula (2). So application of inverse pivotal matrix method is realized when

• n essentially surpass m ;

• matrix A is sparse;

• it is required to solve both primal and dual problems.

3.3 Intercomparison of methods

In the case of tabular simplex method, columns decomposition is preferred due to calculations
and communication speci�c (�g. 9). All the columns 1, 2, . . . , n can be divided in equal
proportions between the processes K = 1, 2, . . . , N , the vector of basic variables and the
criterion function value are sent to all processes and are processed independently. So the basic
steps of one algorithm iteration are following:

1398

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Process K
S00 = Z zd (K−1)n

N
e+1

zd (K−1)n
N

e+2
· · · zdKn

N
e

S10 = XB1 S1d (K−1)n
N

e+1
S1d (K−1)n

N
e+2

· · · S1dKn
N
e

S20 = XB1 S2d (K−1)n
N

e+1
S2d (K−1)n

N
e+2

· · · S2dKn
N
e

...
...

...
. . .

...
Sm0 = XB1 Smd (K−1)n

N
e+1

Smd (K−1)n
N

e+2
· · · SmdKn

N
e

Fig. 9. Simplex table decomposition

1. Choose the leading column from non-basic coe�cients of the objective function (based
on some common criteria each process selects from the columns it has).

2. The global exchange between the processes with the values obtained in step 1 and choosing
optimal (pivot column for all processes).

3. Process that holds leading column chooses what variable to remove from basic ones (the
choice of the leading line).

4. Process holding pivot column globally distribute numbers of the variables being included
and excluded from the basic variables, as well as the pivot column.

5. Each process carries out the computation of a new canonical form by the rules of simplex
method on the columns it has.

From the above we can conclude that the parallel version of algorithm is not much more
complicated than sequential. It uses only minimum number of collective communications. All
that should lead to a uniform loading of the system and high e�ciency of parallelization [8].

The main di�culty arises when procedure of generating the basic plan is introduced. If
simply add the necessary slack and dummy variables, and discard that columns after the �rst
phase, the load will not be uniform. This problem can be solved in two ways:

• Redistribution of columns after the �rst stage, that is di�cult and costly.

• Distribute the matrix in a way that each process got approximately equal number of
columns of the original problem and columns that appear during the computation of the
initial basic plan. This procedure requires for each process to know how many columns
to discard after the �rst phase.

In the case of revised simplex method, the original matrix must be available to all processes
because it is unknown what variables become basic and by which process they will be handled.
Additional overhead for communication during computations lead to the fact that one cannot
create an simple e�ective parallel version of the revised simplex method algorithm [9].

3.4 Algorithm of Parallel Simplex Method

This approach to parallelization of simplex method was implemented as MPI program Plinpex
(parallel lineal exact solver). It uses rational data types from GNU MP library for exact
computations or arbitrary precision �oating point interval data types from MPFI library

1399

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

(depends on compilation �ags). A set of gcc 4.4.3 compiler, gdb debugger, efence and valgrind
pro�ler was used. Implementation, testing, and some computational experiments were performed
on gentoo gnu/linux based cluster of workstations that we built from computer class resources
of department laboratory.
Algorithm Plinpex:

1: for each of N processes initialize MPI environment and identify itself via its MPI rank .
2: if rank = 0 then
3: read input problem �le in MPS [10] format;
4: parse MPS �le and save variable names;
5: initialize and �ll matrix A , vector of objective function coe�cients c and linear

constraints b ;
6: expand matrix A with slack and dummy variables for basic plan �nding; initialize basic

variables vector, dummy objective function;
7: end if
8: call MPI barier and initiate main solve function
9: broadcast common problem data from rank 0 process (problem; size and the number of
slack and dummy variables);

10: evaluate number of main and dummy columns by knowing its rank and total number of
processes N ;

11: if rank <> 0 then
12: initialize memory for the part of A matrix, vectors of linear constraints b , dummy and

objective function c , basic variables vector;
13: end if
14: broadcast the linear constraints and basic variables vector from rank 0 process;
15: if rank = 0 then
16: for i = 1 to N do
17: send part of main and dummy columns of A matrix to rank i ;
18: end for
19: else
20: receive its main and dummy columns of A matrix;
21: end if
22: call MPI barrier to synchronize of main computation loop
23: repeat
24: choose the pivot column from columns this process handles;
25: callMPI all reduce and choose pivot column globally, let's assume the process that handles

pivot column has rank L ;
26: if minimum found then
27: if step one then
28: basic plan found, exclude dummy column and replace dummy objective function

with primary one;
29: else
30: solution is found, goto 42;
31: end if
32: end if
33: if rank = L then
34: chose a variable excluding from basic variables and pivot row;

1400

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

35: end if
36: indexes of including and excluding to/from basic variables and broadcast the pivot column

from rank L to other processes;
37: apply simplex method transformation on columns handled;
38: if entering/excluding basic variables are handled locally then
39: update basic variables vector;
40: end if
41: until solution is found
42: if rank = 0 then
43: output the problem solution;
44: end if
45: terminate MPI environment and exit.

4 Computational Experiments

Computational experiments were performed on �SKIF Ural� cluster of South-Ural State
University. Brief speci�cations are presented in table 2.

Table 2

The speci�cations of computational platform

CPU type (per 1 blade) 2 quad core Intel Xeon E5472 3.0 GHz
System Memory (per 1 blade) 8 GB
Network type In�niBand (20Gbit/s, max latency of 2 ms)
Operating System SUSE Linux Enterprise Server 10 x86_64

4.1 Experiment with Guaranteed Accuracy Floating Point Types

Parallel version of Gauss-Jordan elimination algorithm adapted for computing with mp�_t
(mp�n_t) and mpf_t (mpfn_t) was used. The e�ectiveness of parallelization is shown on �g.
10.

It should also be noted that when precision (mantissa length) is increased the e�ciency of
parallelization is also increased (table 3).

4.2 Linear Programming Problems Solving Experiment

Linear programming problems from Netlib library [11] were used as input data for computational
experiment. This library contains complex problems that are often used for testing linear
programming solving software systems. For the experiment we chose problems with various
density and ratio.

Results with exact rational mpq_t type are presented on �gure 11 , arbitrary precision
�oating point data types (mpf_t, mpfn_t) and interval data types (mp�_t, mp�n_t) are shown
on �gure 12.

5 Conclusion

Methods for the e�ective application of arbitrary precision �oating point (interval) data types
in MPI environment in this paper are suggested in the work. Interval arbitrary precision types

1401

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Fig. 10. E�ectiveness of Guaranteed Accuracy Floating Point parallelization

for Gauss-Jordan elimination

Table 3

Time resources for Gauss-Jordan elimination
double mpf mpfn mp� mp�n

N 53 64 192 704 64 192 704 192 192
1 43.04 1250.99 1817.42 6203.19 1238.50 1796.03 6219.70 3943.99 3817.11
2 22.06 627.28 913.78 3106.40 617.31 910.50 3132.24 2747.88 2073.00
4 20.41 315.35 489.06 1561.31 312.38 463.75 1573.92 1464.61 1072.29
8 18.83 171.44 269.83 795.95 166.03 239.94 804.95 634.02 537.36
16 5.98 86.91 123.35 413.09 85.19 124.01 410.43 265.07 261.93
24 1.98 60.12 83.07 325.72 61.50 84.44 277.53 225.70 172.57
32 1.68 47.70 66.41 212.97 47.30 68.72 220.01 144.66 133.10
64 1.53 27.90 40.98 135.55 28.06 40.97 123.79 87.36 84.79
96 1.54 19.85 29.25 92.61 19.88 27.57 84.55 60.14 57.31
128 2.01 16.86 23.41 77.10 18.53 26.31 76.18 49.15 47.90

Fig. 11. e�ectiveness of rational type

parallelization (lp)
Fig. 12. E�ectiveness of arbitrary precision

�oating point parallelization (LP)

1402

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

give advantages of obtaining guaranteed results, that include rounding errors which can be
analyzed to decide whether current precision of solution is su�cient. Interval arithmetic has
main disadvantage of enclosures being too large but with arbitrary precision types we can cope
with this problem to some extent and solve even high dimension problems. It should also be
noted that the positive e�ect of parallelization in this case is not only in computation time
reduction but also in ability to solve problems of higher dimension, because it is easy enough
to reach memory limits, when the matrix will not �t entirely in memory of the single node.

All reviewed commercial programs use basic �oating point data types and therefore they can
not guarantee the accuracy of solutions. An exception from a number of programs, that does
not provide guaranteed results are two open source implementations of simplex method, that
use exact rational computations algorithms based on GNU MP library; and that fact inevitably
leads to a substantial increase in computation time. However, they do not take advantage of
parallel programming techniques which, with a skilful use, reduce the computation time and
increase the number of problems that can be solved (problems with more dimensions).

The aim of this work was implementation of exact rational and guaranteed arbitrary
precision �oating point interval computations software for parallel and distributed computing
systems called Plinpex. Software Plinpex use proposed methods for data types adaptation to
MPI and parallel simplex method algorithm. The proposed algorithm uses only two collective
communication at each iteration of the main computational loop of the program.

The computational experiments showed that the implemented methods are e�ective for
problems of di�erent dimensions, ratio and density. The usage of rational and arbitrary
precision �oating point interval data types adaptation to MPI gives ability to obtain exact
and guaranteed results respectively. Examination of computational experiment result reveals
e�ciency of implemented parallel simplex method algorithm. According to experiments results
the e�ciency of parallelization depends on precision and it is about 70-80% (and grows with
precision increase), and even higher for exact rational computations. However, the total time
of computations can be improved with several algorithm optimizations. It is the subject for the
further work.

References

1. MPI: A Message Passing Interface Standard, 1995. URL: http://www.mpi-
forum.org/docs/mpi-11-html/mpi-report.html.

2. GNU Multiple Precision Arithmetic Library, 2010. URL: http://gmplib.org/.

3. MPFI library, 2008. URL: http://perso.ens-lyon.fr/nathalie.revol/software.html.

4. Panyukov A.V., Germanenko M.I., Gorbik V.V. Parallel algorithms for solving systems
of linear algebraic equations using calculations without rounding//Parallel Computing
Technologies (Pavt'2007). 2007. V. 2. P. 238-249.

5. Panyukov A.V., Gorbik V.V. Exact solution of linear programming problems on
multiprocessor systems//Parallel Computing Technologies (Pavt'2008). 2008. P. 364-369.

1403

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

6. MPFR library, 2009. URL: http://www.mpfr.org/.

7. Pan V.Y., Reif J.H. Fast and E�cient Parallel Linear Programming and Linear Least
Squares Computations //Proceedings of the VLSI Algorithms and Architectures, Aegean
Worksho on Computing. Springer-Verlag, 1986. P. 283-295.

8. Hall Ju. Towards a practical parallelisation of the simplex method // J. Computational
Management Science. 2010. V. 7. N. 2. P. 139-170.

9. Yarmish G.G. A Distributed Implementation of the Simplex Method//UMI. Dissertations
Publishing, 2001.

10. MPS format, 2008. URL: http://softlib.cs.rice.edu/pub/miplib/mps_format.

11. Netlib library collection, 1996. URL: ftp://netlib2.cs.utk.edu/lp/data.

GRATITUDES: The work is supported by Russian Foundation of Bounded Research
(project 10-07-96003-r_ural_a).

Accepted for publication 7.06.2010.

ÐÅØÅÍÈÅ ÇÀÄÀ×È ËÈÍÅÉÍÎÃÎ ÏÐÎÃÐÀÌÌÈÐÎÂÀÍÈß Ñ
ÏÐÎÈÇÂÎËÜÍÎÉ ÒÎ×ÍÎÑÒÜÞ ÍÀ ÐÀÑÏÐÅÄÅËÅÍÍÛÕ

ÂÛ×ÈÑËÈÒÅËÜÍÛÕ ÑÈÑÒÅÌÀÕ Ñ MPI

c© Àíàòîëèé Âàñèëüåâè÷ Ïàíþêîâ
Þæíî-Óðàëüñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò, ïð. Ëåíèíà, 76, ×åëÿáèíñê, 454080,

Ðîññèÿ, äîêòîð ôèçèêî-ìàòåìàòè÷åñêèõ íàóê, ïðîôåññîð, çàâ. êàôåäðîé
ýêîíîìèêî-ìàòåìàòè÷åñêèõ ìåòîäîâ è ñòàòèñòèêè, e-mail: a_panykov@mail.ru

c© Âàñèëèé Âëàäèìèðîâè÷ Ãîðáèê
Þæíî-Óðàëüñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò, ïð. Ëåíèíà, 76, ×åëÿáèíñê, 454080,

Ðîññèÿ, àñïèðàíò êàôåäðû ýêîíîìèêî-ìàòåìàòè÷åñêèõ ìåòîäîâ è ñòàòèñòèêè,
e-mail: vgorbik@gmail.com

Êëþ÷åâûå ñëîâà: ëèíåéíîå ïðîãðàììèðîâàíèå; ìåòîä ñèìïëåêñ-òàáëèö; ðàñïðåäå-
ëåííûå âû÷èñëåíèÿ; ïàðàëëåëüíàÿ îïòèìèçàöèÿ; äðîáíî-ðàöèîíàëüíûå âû÷èñëå-
íèÿ; ïðîèçâîëüíàÿ òî÷íîñòü; èíòåðâàëüíàÿ àðèôìåòèêà.
Ïðåäìåòîì ñòàòüè ÿâëÿþòñÿ ñïîñîáû ïîëó÷åíèÿ êàê òî÷íîãî ðåøåíèÿ, òàê è ïðè-
áëèæåííîãî ðåøåíèÿ ñ ãàðàíòèðîâàííîé òî÷íîñòüþ, à òàêæå ñïîñîáû ïîâûøåíèÿ
òî÷íîñòè âû÷èñëåíèé íà ðàñïðåäåëåííûõ âû÷èñëèòåëüíûõ ñèñòåìàõ ñ MPI. Äëÿ ïî-
ëó÷åíèÿ òàêèõ ðåøåíèé ïðèìåíÿþòñÿ äðîáíî-ðàöèîíàëüíûå âû÷èñëåíèÿ áåç îêðóã-
ëåíèÿ, âû÷èñëåíèÿ íàä ÷èñëàìè ñ ïëàâàþùåé òî÷êîé ïðîèçâîëüíîé íàïåðåä çàäàí-
íîé òî÷íîñòüþ è èíòåðâàëüíûå âû÷èñëåíèÿ ñ òàêèìè ÷èñëàìè. Ïðåäñòàâëåíû ñïî-
ñîáû àäàïòàöèè ïðåäëîæåííûõ òèïîâ äàííûõ ê MPI. Ðåçóëüòàòû âû÷èñëèòåëüíîãî
ýêñïåðèìåíòà íà ðàçðàáîòàííûõ ïàðàëëåëüíûõ àëãîðèòìàõ ðåøåíèÿ ñèñòåì ëèíåé-
íûõ àëãåáðàè÷åñêèõ óðàâíåíèé è çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ ïîêàçûâàþò
ýôôåêòèâíîñòü èõ ïðèìåíåíèÿ.

1404

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

PARALLELIZED COMPUTATION OF
EXTENDED UNIVERSAL GR�OBNER BASIS

c© Dmitry Alekseevich Pavlov
Saint-Petersburg State Polytechnical University, Polytechnicheskaya 29, St.-Petersburg,

195251, Russia, Post-graduate Student of Applied Mathematics Department,
e-mail: dmitry.pavlov@gmail.com

Key words: universal Gr�obner basis; polynomial ideal; Young diagram.
The article presents an algorithm to calculate Extended Universal Gr�obner Basis
(EUGB), working on wide range of polynomial ideals. The EUGB(A) of a polynomial
ideal A is de�ned as a �nite [1] set of polynomials {fi} whose Young diagrams Y (fi)
meet the following condition: dim(L(Y (fi))∩A) = 1 (where L denotes the span of a set
of polynomials in the quotient algebra of the ideal). It is known that the EUGB contains
the Universal Gr�obner Basis. The algorithm is based on geometry of Young diagrams
in ZZd+ , and �nds the polynomials of EUGB mostly independently, which makes it able
to run in parallel. An outline of the parallel version of the algorithm is given.

1 Notation and Background

Let K[x1, . . . , xd] be a polynomial ring over a �eld K in d variables X = {x1, . . . , xd} . The
space of monomials in these variables can be trivially identi�ed with the lattice ZZd>0 . Here
and after, we make no di�erence between the monomials and integer vectors with nonnegative
coordinates�the elements of the lattice.

A polynomial ideal [2], generated by polynomials (f1, . . . , fs) , is de�ned as the following
in�nite set of polynomials from K[x1, . . . , xd] :

〈f1, . . . fs〉 =

{
s∑
i=1

hifi : h1, . . . , hs ∈ K[x1, . . . , xd]

}
.

It is known that the ideal can have more than one possible set of generators, each of which
is called a basis of the ideal [2].

Let � be a total order on ZZd>0 . It is called admissible, when it meets the following condition:

• α � 0 for each α 6= 0 ;

• If α � β , then α + γ � β + γ for each γ ∈ ZZd>0 .

We denote as LT�(f) the leading term of the polynomial f , that is, the term whose
monomial is the biggest according to the admissible ordering � .

Let A be a polynomial ideal in K[x1, . . . , xd] and � be an admissible monomial ordering.
A �nite set of polynomials G ∈ A is called a Gr�obner basis GB�(A) of A , if the leading term
of any polynomial from A is a multiple of some leading term of a basis polynomial [2]:

1405

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

〈{LT�(gi) : gi ∈ G}〉 = 〈{LT�(f) : f ∈ A}〉.

The Gr�obner basis G of the ideal A has two important properties: �rst, it generates A ,
and second, every polynomial g ∈ A has a normal form r , de�ned as a result of polynomial
reduction of g w.r.t. G with the monomial order � :

g = h1f1 + · · ·+ hsfs + r, hi, r ∈ K[x1, . . . , xd].

By the de�nition of polynomial reduction, no term of r is a multiple of any of LT�(fi) (*).

2 Coideals, quotient algebra, and FGLM algorithm

The nondivisibility condition (*) has a convenient geometrical interpretation: all monomials of
r are positioned �under� the monomial ideal, formed by {LT(fi), fi ∈ GB�(A)} . That is, they
belong to the coideal Co(GB�(A)) = ZZd>0\〈{LT(fi)}〉 .

All possible normal forms of polynomials of A w.r.t. GB�(A) belong to L(Co(GB�(A))) ,
where L denotes the span of a set of polynomials in the quotient algebra of the ideal. We
denote it Q�(A) , as it actually determines the quotient algebra of the ideal A (�g. 2):

Q�(A) ∼ K[x1, . . . , xd]/A.

Fig. 1. The quotient algebra of an ideal generated by {y4 + xy, x2y2 + y, x3y − y3} , is in turn

generated by monomials, underlying the dashed area

1406

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

We call monomials {mi} (not necessarily �nite set) linearly independent w.r.t. A , if the
intersection of their span with A is also zero:

L({mi} ∩ A) = {0}.

The ideal A clearly do not contain any normal forms w.r.t. A , except the zero polynomial:

Q�A ∩ A = {0}.

Hence, the monomials from the coideal Co(GB�(A)) form a linearly independent set. But as
soon as we add to this set the leading monomial of any polynomial of the Gr�obner basis, we
have this polynomial within the linear span of the set:

L(Q�(A) ∪ LT(fi)) ∩ A = 〈fi〉,

and the dimension of this span is obviously equal to 1:

dim(L(Q�(A) ∪ LT(fi)) ∩ A) = 1.

This way of Gr�obner basis polynomials construction is used in FGLM [4] algorithm, which
computes a Gr�obner basis for an arbitrary monomial order �′ , given another Gr�obner basis for
another monomial order � . Basically, the FGLM algorithms incrementally builds the coideal
(starting from zero monomial), following the monomial order �′ , until the monomials are not
linearly independent. After they become linearly dependent, the corresponding polynomial of
the Gr�obner basis it calculated, and then the algorithms steps back and goes on, never adding
that �linearly dependent� monomial again.

The FGLM algorithm has a limitation: it accepts only zero-dimensional polynomial ideals�
the ideals whose quotient algebra is generated with a �nite number of monomials. In another
words, the coideal Co(GB�(A)) in this case is �nite, i.e. zero-dimensional.

3 Universal Gr�obner basis and Young diagrams

We denote as UGB(A) the universal Gr�obner basis of the ideal A : the union of all possible
Gr�obner basiss with all admissible monomial orders. Robbiano [3] has shown that the UGB is
always �nite.

We de�ne a d -dimensional Young diagram as a subset of ZZd>0 lattice, with the only
requirement that if it contains some monomial m , it must also contain all divisors of m .

We call a Young diagram of a polynomial r ∈ A the one formed by the terms (monomials)
of r , that is, a union of monomials of r and all their divisors (�g. 3).

xy4

x3y3

y2

x6y
x4

Fig. 2. Young diagram of polynomial 5xy4 + 2x3y3 + xy2 − x6y + 8x4

1407

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

For every polynomial f ∈ UGB(A) the following condition is hold [1]:

dim(L(Y (f) ∩ A)) = 1. (1)

This condition does not guarantee that the polynomial f is a part of UGB(A) ; nevertheless,
this condition is easier to check, as it does not imply any admissible monomial order.

We denote EUGB(A) the Extended Universal Gr�obner basis of the ideal A :

EUGB(A) = {f ∈ A : dim(L(Y (f) ∩ A)) = 1}.

The EUGB(A) is always �nite [1]. Clearly, UGB(A) ⊂ EUGB(A) . Unlike the �nding of
UGB(A) , the �nding of EUGB(A) is done via geometrical and combinatorial operation on
ZZd>0 .

4 Finding EUGB(A)

The described algorithm searches for Young diagrams whose spans have a one-dimensional
intersection with the ideal A , and this intersection is itself an ideal generated by some
polynomial from EUGB(A) .

The following global variables are used:

• *basis* � an arbitrary Gr�obner basis to start with; for example, a Gr�obner basis w.r.t.
degrevlex monomial order. It is needed for checking the linear independence of the
monomials of Young diagrams.

• *diagrams* � a list of found diagrams that ful�ll the condition (1). Each diagram is
de�ned by a list of nondivisor monomials (i.e. �corners� of the diagram. At the start, the
list of diagrams contain the Young diagrams of the polynomials of the *basis*. (Although
it could be empty, but then the procedure would have taken more time.)

• *bad-coideals* � a list of coideals that do not contain diagrams of interest of size less
than MAX-SIZE. At the start, this list is empty.

The following helper functions are mentioned but not listed:

• nondivisors (poly): accepts a polynomial and returns its monomials, that are not
divisors of any other monomials of this polynomial.

• contains-divisors-of (monomials, diagram) �nds among the monomials the divisors
of diagram's�corners�.

• remove-multiples-of (monomials, corner) removes from monomials the ones that
are multiples of corner.

• intersect-with-ideal (sequence, basis) checks the intersection of a span of the
sequence and the ideal, generated by basis. If the intersection is not zero, it is assumed
1-dimensional, and the resulting generating polynomial is returned.

• coideal-belongs (inner, outer) checks that the inner monomial coideal is a subset
of the outer.

1408

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

• closest-to-origin (list) returns the monomial from the list that is closest to the
origin.

As the �rst step, the algorithm outputs the polynomials of the given *basis*, which clearly
meet the condition (1), and saves the diagrams of these polynomials. After that, the monomial
coideals not containing the found *diagrams* are enumerated.

find-eugb (*basis*):

diagrams← {}
for all poly ∈ *basis* do

yield poly

diagrams← *diagrams* ∪ nondivisors(poly)
end for

repeat

oldsize = size(*diagrams*)
process-coideals(*diagrams*)

until size(*diagrams*) = oldsize

In order to prevent duplicating diagrams in the output, each diagram is being searched for in
a monomial coideal, which does not contain at least one �corner� of already found *diagrams*.
Such a coideal (there can be many of them, but not in�nitely many) is computed by the recursive
procedure process-coideals. Once it is found, the find-polynomial function is invoked for
this coideal.

process-coideals (diagrams, coideal = {}):
if diagrams = {} then

find-polynomial(coideal)

else

diagram ← any of the diagrams
if contains-divisors-of(coideal, diagram) then

process-coideals(diagrams\diagram , coideal)

else

for all corner ∈ diagram do

new-coideal← corner ∪ remove-multiples-of(coideal, corner)

process-coideals(diagrams\diagram , new-coideal)

end for

end if

end if

The next procedure accepts a coideal and grows a Young diagram inside it, starting from an
empty diagram, and adding monomials one-by-one, until the condition 1 is met. On each step,
from all monomials (�dimples�) available for addition, the one closest to the origin is selected.

As the coideal may be in�nite (especially in case we are dealing with a non-zero-dimension
polynomial ideal), the procedure is forced to stop once the size of the coideal reaches MAX-SIZE.

find-polynomial (coideal):

for all bad-coideal ∈ *bad-coideals* do

if coideal-belongs(coideal, bad-coideal) then

return

1409

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

end if

end for

seq← {}
dimples← {0}
while dimples 6= {} do

if |seq| > MAX-SIZE then

print Linear-dependent Young diagram not found in coideal.
bad-coideals = *bad-coideals* ∪ coideal
return

end if

new-monom← closest-to-origin(dimples)

seq← seq ∪ new-monom
poly← intersect-with-ideal(seq, *basis*)

if poly 6= 1 then

diagrams← *diagrams* ∪ support(poly)
yield poly

end if

dimples← update-dimples(new-monom, dimples\new-monom)
end while

The helper procedure update-dimples adds a new �dimple� to the list of available monomials
for the next step of diagram growing, and removes its divisors from the list.

update-dimples (dimples new-cell):

for all v ∈ X do

if 6 ∃c ∈ dimples : c ≺ v · new-cell then

dimples← dimples ∪ v · new-cell
end if

end for

return dimples

The above algorithm is able to �nd the polynomials of EUGB(A) , whose Young diagrams
are of size less than MAX-SIZE. The size limit can be discarded for zero-dimensional ideals, where
the endless growing of a diagram of linearly independent monomials is theoretically impossible.
On all other ideals, the size limit allows to avoid endless loops, but can lead to loss of some
EUGB polynomials with too big Young diagrams.

Unfortunately, there is no possibility to give any reasonable estimation for MAX-SIZE that
would guarantee the generation of entire EUGB. Obviously, the size of a Young diagram of a
polynomial can not be less than its degree; and the best known estimations on the degree of
Gr�obner basis elements are 22k for lex ordering [5] and k2 + 1 for grevlex ordering [6] (where
k is the maximum degree amongst the generators of the ideal).

5 Parallelizing the EUGB �nding algorithm

A lot of operations in the algorithm described above can be run in parallel. While process-

coideals in the original algorithms outline is called step-by-step, with each next step having
one more diagram, it is possible �rst to calculate a few coideals to search in, then search
for EUGB polynomials in each coideal independently, using a separate working thread. The
following statements should be considered when implementing the parallelized EUGB �nding:

1410

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

• It is possible that the parallel algorithm would �nd the same Young diagrams simultaneously
in di�erent computing threads. While this overhead is not likely to be completely
eliminated, some techniques would help (see below).

• Each coideal given to the working thread should not contain any of the *diagrams*

found so far. Also, the less monomials the �current� processed coideals have in common,
the better.

• To further decrease the possibility of �nding duplicate diagrams simultaneously, the
following principle should be used when selecting the next monomial for diagram increment
(in addition to closest-to-origin): once the monomial got into the diagram being built
by a working thread, it is better not to add this monomial to a diagram being build in a
neighbor working thread; this should be done only if no other options are left.

• Once all the working threads are done with their Young diagrams and return some
polynomials, the control �ow should go back to the main thread, where the results
are stored, the duplicates are eliminated, and the new portion of monomial coideals is
calculated for the next parallel computation step.

6 Acknowledgements

I wish to thank Nickolay Vasiliev for encouraging and supervising my work on this topic.

References

1. Vasiliev N.Monomial Orderings, Young Diagrams and Gr�oebner Bases // Proceedings of the
International Conference �Computer Algebra in Scienti�c Computing� (CASC). Technical
University of Munchen. Munchen, 2003.

2. Cox D.A., Little J.B., O'Shea D. Ideals, Varieties, and Algorithms // Introduction to
Computational Algebraic Geometry and Commutative Algebra. New York: Springer, 2007.

3. Robbiano L. Term ordering on the polynomial ring // Proceedings of EUROCAL '85 (Linz),
Lecture Notes in Computer Science. 1985. V. 204. P. 513-517.

4. Faug�ere J. C., Gianni P., Lazard D., Mora T. E�cient computation of zero-dimensional
Gr�obner bases by change of ordering // J. of Symbolic Computation. 1993. V. 16. Issue 4.
P. 329-344.

5. Mayr E., Meyer A. The complexity of the word problem for commutative semigroups and
polynomial ideals // Adv. Math. 1982. V. 46. P. 305-329.

6. Lazard D. Gr�obner Bases, Gaussian elimination and resolution of systems of algebraic
equations // Proceedings of the European Computer Algebra Conference on Computer
Algebra (EUROCAL). London: Springer-Verlag, 1983. P. 146-156.

Accepted for publication 7.06.2010.

1411

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

ÏÀÐÀËËÅËÜÍÎÅ ÂÛ×ÈÑËÅÍÈÅ ÐÀÑØÈÐÅÍÍÛÕ
ÓÍÈÂÅÐÑÀËÜÍÛÕ ÁÀÇÈÑÎÂ ÃÐ�ÁÍÅÐÀ

c© Äìèòðèé Àëåêñååâè÷ Ïàâëîâ
Ñàíêò-Ïåòåðáóðãñêèé ãîñóäàðñòâåííûé ïîëèòåõíè÷åñêèé óíèâåðñèòåò, Ïîëèòåõíè÷åñêàÿ,

29, Ñàíêò-Ïåòåðáóðã, 195251, Ðîññèÿ, àñïèðàíò êàôåäðû ïðèêëàäíîé ìàòåìàòèêè,
e-mail: dmitry.pavlov@gmail.com

Êëþ÷åâûå ñëîâà: óíèâåðñàëüíûé áàçèñ Ãð¼áíåðà; ïîëèíîìèàëüíûé èäåàë; äèàãðàì-
ìà Þíãà.
Â ñòàòüå ïðåäñòàâëåí àëãîðèòì âû÷èñëåíèÿ ðàñøèðåííîãî óíèâåðñàëüíîãî áàçè-
ñà Ãð¼áíåðà (EUGB), ðàáîòàþùèé íà øèðîêîì êëàññå ïîëèíîìèàëüíûõ èäåàëîâ.
EUGB(A) ïîëèíîìèàëüíîãî èäåàëà A îïðåäåë¼í êàê êîíå÷íîå [1] ìíîæåñòâî ïî-
ëèíîìîâ fi, ÷üè äèàãðàììû Þíãà Y (fi) óäîâëåòâîðÿþò ñëåäóþùåìó óñëîâèþ:
dim(L(Y (fi)) ∩ A) = 1 (ãäå L îáîçíà÷àåò ëèíåéíóþ îáîëî÷êó ìíîæåñòâà ïîëèíî-
ìîâ â ôàêòîðàëãåáðå èäåàëà). Èçâåñòíî, ÷òî EUGB ñîäåðæèò óíèâåðñàëüíûé áàçèñ
Ãð¼áíåðà èäåàëà. Àëãîðèòì îñíîâàí íà ãåîìåòðè÷åñêèõ ñâîéñòâàõ äèàãðàìì Þí-
ãà â ZZd+, è ýëåìåíòû EUGB íàõîäÿòñÿ èì ïî áîëüøåé ÷àñòè íåçàâèñèìî äðóã îò
äðóãà, ÷òî ïîçâîëÿåò âû÷èñëÿòü èõ ïàðàëëåëüíî. Â ïîñëåäíåé ÷àñòè ñòàòüè äàíà
ñõåìà ïàðàëëåëèçàöèè àëãîðèòìà.

1412

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

UDK 519.688

PARALLEL ALGORITHMS FOR COMPUTING THE CHARACTERISTIC
POLYNOMIALS BASED ON THE METHOD OF HOMOMORPHIC IMAGES

c© Oksana Nikolayevna Pereslavtseva
Tambov State University named after G.R. Derzhavin, Internatsionalnaya, 33, Tambov,

392000, Russia, programmer of Algebraic Computing Department,
e-mail: Pereclavtseva@rambler.ru

Key words: computing characteristic polynomial of matrices; parallel algorithm; method
of homomorphic images; cluster.
There are produced parallel algorithms for computing the characteristic polynomials
for integer and polynomial dense matrices. The algorithms are based on the method
of homomorphic images in the ring of integers and in the ring of polynomials.We have
obtained an upper bound for numerical coe�cients of a characteristic polynomial. There
are stated and discussed results of experiments with parallel algorithms for computing
the characteristic polynomials of integer and polynomials matrices. The experiments
with parallel algorithm are conducted on cluster MVS100k of Joint Super-Computer
Center RAS.

1 Introduction

Computation of the characteristic polynomials for dense matrices is a classical problem of
computing algebra. Let's give overview of the basic results.

In 1881 Leverrie suggested one of the �rst methods for computing the characteristic
polynomials of matrices over ring[1]. Faddeev D.K. in 1943 has o�ered modi�cation of Leverrie's
method [2]. This method also can compute an adjoint matrix. The Leverrie's algorithm (with
Winograd's improvement [3] (p.656)) demands ∼ 4n3.5 ring operations, Faddeev's algorithm
demands ∼ 2n4 ring operations for computing the characteristic polynomial of the matrix of
order n × n . The basis of these algorithms is computation of matrix degrees. It allows to use
parallel matrix multiplication to obtain the parallel algorithms for computing the characteristic
polynomials. We notice that till now Leverrie's and Faddeev's algorithms have been the best
parallel algorithms although much improvement of consecutive algorithms for computation of
characteristic polynomials have been done.

Seifullin's algorithm (2002) [4] has less ring operations (∼ 1/2n4). But his algorithm
cannot work parallel because it is strictly consecutive and is not recursive. For the same reason
Malaschonok's algorithm (1999) [5] with complexity ∼ 8/3n3 and its modi�cation (2008) [6]
with complexity ∼ 7/3n3 also cannot be write in parallel form. These two algorithms have the
least number of ring operations.

Danilewsky's algorithm (1937) [7], Keller-Gehrig's algorithm (1985) [8], Pernet-Storjohann's
algorithm (2007) [9] are the best for computation of characteristic polynomials over a �nite �eld.
It demands ∼ 2n3 , O(nω log2 n) and O(nω) operations over a �nite �eld accordingly. Here
O(nω) is a complexity of matrix multiplication. These algorithms are the asymptotic best
algorithms for computation of characteristic polynomials over a ring of integers and over a ring
of polynomials with integer coe�cients if the CRT algorithm is used.

1413

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

This work is directed to development of parallel methods for computation of characteristic
polynomials of dense matrices. The considered parallel algorithms are based on the method
of homomorphic images. It is do due to the fact that modular arithmetics assumes natural
parallelism since computation of characteristic polynomials for each module is independent and
parallel. In Section 2 there is a detailed description application of the method of homomorphic
images to a ring of polynomials of many variables and to a ring of integers is described detail.
In Section 3 an upper bound of numerical coe�cients of a characteristic polynomial is obtained.
This upper bound is necessary for application of the method of homomorphic images.

Algorithms for computation of a characteristic polynomial over a �nite �eld for the di�erent
sizes of matrices will show di�erent time. Therefore, it is needed to realize various algorithms
for computation of characteristic polynomials, to compare them experimentally and to reveal
the most e�ective ones. Some of the methods have been realized and the experiments have
been made. In Section 4 the parallel algorithm for computation of characteristic polynomials
of integer and polynomial matrices is described. In Section 5 results of the experiments with
the parallel algorithms are discussed.

2 Application of the method of homomorphic images for

characteristic polynomials computation

The method of homomorphic images is described in work [10]. We will apply to the method of
homomorphic images for computation of characteristic polynomials of polynomial matrices of
many variables.

The general circuit of a method of the homomorphic images applied to a ring of polynomials
of many variables Z[x1, . . . , xt] is the following.

Let A = (aµν(x1, . . . , xt)), 1 6 µ 6 n, 1 6 ν 6 n, be a polynomial matrix,
A ∈ Zn×n[x1, . . . , xt, y] , f = (−1)n(yn+

∑n
i=1 fi(x1, . . . , xt)y

n−i) is its characteristic polynomial,
f ∈ Z[x1, . . . , xt, y] .

Let ms be a hight degree of a variable xs , 1 6 s 6 t in polynomials fi , 1 6 i 6 n and
β be a greatest absolute value of numerical coe�cients.

0) Let's choose h prime numbers: p1, . . . , ph so that the inequality was ful�lled
log2 β < log2(p1 · · · ph) . Then we will pass to homomorphic images of elements aµ,ν at mappings

Z[x1, . . . , xt]→ Z[x1, . . . , xt]/piZ[x1, . . . , xt].

Denote

Z[x1, . . . , xt]/piZ[x1, . . . , xt] = Zpi [x1, . . . , xt].

1) Let's choose mt polynomials: xt, xt − 1, . . . , xt − (mt − 1) . Then we will pass to
homomorphic images of elements aµ,ν at mappings

Zpi [x1, . . . , xt]→ Zpi [x1, . . . , xt]/(xt − j)Zpi [x1, . . . , xt],

(0 6 j 6 mt − 1). The following isomorphism takes place

Zpi [x1, . . . , xt]/(xt − j)Zpi [x1, . . . , xt] ∼ Zpi [x1, . . . , xt−1],

1414

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

2) Let's choose mt−1 polynomials: xt−1, xt−1 − 1, . . . , xt−1 − (mt−1 − 1) . Then we will pass
to homomorphic images of elements aµ,ν at mappings

Zpi [x1, . . . , xt−1]→ Zpi [x1, . . . , xt−1]/(xt−1 − j) ∼ Zpi [x1, . . . , xt−2],

(0 6 j 6 mt−1 − 1).
Let's continue toconstruct similarly the homomorphic images of elements aµ,ν for each

variable xs, s = t − 2., 1 . As a result we will pass to homomorphic images in Zpi and we will
obtain hm1m2 · · ·mt matrices

Mij1...jt ∈ Zn×npi
, 1 6 i 6 h, 1 6 j1 6 m1, . . . , 1 6 jt 6 mt.

Let's calculate characteristic polynomials of matrices Mij1...jt by means of some algorithm
over a �nite �eld. We will obtain hm1m2 · · ·mt polynomials fij1...jt(y), 1 6 i 6 h, 1 6 j1 6
m1, . . . , 1 6 jt 6 mt .

Computation of a required characteristic polynomial is found by means of the Chinese
remainder theorem upside-down.

Starting with mt images

{fij1...jt−11(y), fij1...jt−12(y), . . . , fij1...jt−1mt(y)}

of the polynomial fij1...jt−1(xt, y) we will restore this polynomial by means of the Chinese
remainder theorem.

Also starting with mt−1 images

{fij1...jt−21(xt, y), fij1...jt−22(xt, y), . . . , fij1...jt−2mt−1(xt, y)}

of the polynomial fij1...jt−2(xt−1, xt, y) we will restore this polynomial. And so on.
Having ful�lled restoring on all variables, we will obtain k polynomials

{F1(x1, . . . , xt, y), . . . , Fh(x1, . . . , xt, y)},

in factor rings Zp1 , . . . ,Zph accordingly.
The characteristic polynomial of the matrix A is recovered on these h polynomials.

3 Upper bound of coe�cients of characteristic polynomials

over rings Z and Z[x1, . . . , xt]

For program realization of modular algorithm for computing of a characteristic polynomial of
a matrix is necessary to know numerical modules p1, . . . , ph and polynomial modules x1, x1 −
1, . . . , x1 − (m1 − 1); . . . ;xt, xt − 1, . . . , xt − (mt − 1) for a polynomial matrix .

The best upper bound which is known today for the coe�cients of a characteristic
polynomial of an integer matrix is obtained in the work [11]. According to that the number of
bits in the coe�cients of a characteristic polynomial does not exceed

µn,a =
n

2
(log2 n+ 2 log2 a+ 0, 22),

1415

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

when n is order of the matrix, a is the greatest absolute value for numerical coe�cients of
matrix elements.

The array of prime numbers is supposed to be set. Choosing from that the prime numbers
and calculating their product it is easy to choose su�cient number h of modules. The inequality

µn,a 6 log2(p1p2 · · · ph) (1)

must be ful�lled.
Let's �nd upper bound for coe�cients of a characteristic polynomial of a polynomial matrix

from one variable [12].

Let F (x, y) =
∑n

i=0

(∑m−1
j=0 gijx

j
)
yi . Numerical modules p1, . . . , ph should be selected so

that p1 · · · ph > max |gij| .
Let ||f || be a norm of a polynomial f . It is the greatest absolute value for numerical

coe�cients of the polynomial f .
Let A = (aij(x)), 1 6 i 6 n, 1 6 j 6 n ,

d = max{deg aij(x)} ,
||A|| = max{||aij||} = a for 1 6 i 6 n, 1 6 j 6 n ;
s(A) = max{s(aij(x))} = t .

Theorem 1 Let
F (x, y) = yn + f1(x)yn−1 + · · ·+ fn(x)

be the characteristic polynomial of matrix A(x) and m = max{deg f1(x), . . . , deg fn(x)}+ 1 .
Then m 6 nd+1 and for the greatest on the module of numerical coe�cient of a polynomial

F (x, y) the inequality is carried out

log2 ||F (x, y)|| 6 n(log2 n+ log2 a+ log2 t)− log2 t. (2)

Proof 1 The polynomial fi(x) is a sum of all the (n− i)× (n− i) diagonal minors of A(x) .
Therefore m 6 nd+ 1 .

In order to �nd an upper bound for ||F (x, y)|| we use Leverrie-Faddeev's algorithm [2]:
B0 = E;
i = 1, . . . , n :

{Ai = ABi−1;
fi = (1/i)TrAi;
Bi = Ai − fiE}.

For matrix Bi we consider two norms ||Bi||d and ||Bi||n . ||Bi||d is the greatest absolute
value for numerical coe�cients of matrix Bi which elements are on the main diagonal. ||Bi||n
is the greatest absolute value for numerical coe�cients of matrix Bi which elements are not on
the main diagonal.

For i = 1 : ||A1|| 6 a, ||f1|| 6 na, ||B1||n 6 a, ||B1||d 6 (n+ 1)a .
For i > 1 : min{s(Bi−1), t} = t . Then

||fi|| 6 (n/i)||Ai|| ;
||Ai|| 6 (n− 1)ta||Bi−1||n + ta||Bi−1||d ;
||Bi−1||n = ||Ai−1|| and ||Bi−1||d = ||Ai−1||+ ||fi−1|| .
Then, ||Ai|| 6 ta(n||Ai−1|| + ||fi−1||) 6 tan(i/(i − 1))||Ai−1|| . Then ||Ai|| 6 ni−1ti−1aii and
||fi|| 6 niti−1ai for i > 1 .

1416

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

||fi|| is greatest when i = n . ||fi|| 6 nntn−1an . Taking the logarithm of the last inequality by
the basis of 2 , we btain the upper bound for numerical coe�cients of characteristic polynomials
of polynomial matrices of one variable (2).

Remark 2 If polynomial f of one variable is dense then s(f) = d+ 1 .

Remark 3 The formula (2) is true for a dense polynomial matrix of many variables. The
number of polynomial modules is calculated for each variable x1, . . . , xt : mi = ndi + 1 , where
di is the hight degree of the variable xi , i = 1, . . . , t .

4 Parallel algorithms for computing the characteristic

polynomials which are based on the method

of homomorphic images

4.1 The circuit of data communication

The matrix A ∈ Zn×n[x1, . . . , xt] and the number boundlev are input data for the parallel
algorithm. The parameter boundlev is number of levels of the algorithm tree. This number
depends on the task (the order and matrix coe�cients) and on the computing cluster. The set
of prime numbers is de�ned in advance and stored on each processor. At �rst the quantity h
of numerical modules and the quantity of polynomial modules on each variable x1, . . . , xt is
calculated.

A graph of the algorithm is a binary tree which is presented in a �gure 1. Horizontal lines
are divide the graph into levels. At the �rst level there is only a root, at the second level there
are its two daughter nodes, at the third level there are their daughter nodes etc.

Fig. 1. The graph of the algorithm

In the input root receives the matrix A and the array

intervals = {[1,m1], . . . , [1,mt], [1, k]}.

1417

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

In the array intervals �rst two numbers [1,m1] correspond to polynomial modules x1, x1 −
1, x1 − 2, .., x1 − (m1 − 1) , second two numbers [1,m2] correspond to polynomial modules
x2, x2 − 1, x2 − 2, .., x2 − (m2 − 1) and so on, and the last two numbers [1, h] correspond
to numerical modules [p1, p2, .., ph] . As a result of calculations in the root we will receive a
characteristic polynomial of the matrix A .

Daughter nodes at level 2 receive from root a matrix A and the array of modules
intervals = {[1,m1], . . . , [1,mt], [1, h1]} (for the left node) or intervals = {[1,m1], . . . , [1,mt] ,
[h1 + 1, h} (for the right node), where h1 = b(1 + h)/2c . Thus each daughter node has half of
all numerical modules. It should return in root the characteristic polynomial of matrix A in
a factor-ring module of products of all modules received from the root. For the left node the
module is p1p2 · · · ph1 , for the right node � ph1+1ph1+2 · · · ph .

Each node at level 2 also divide the array of modules half-and-half and sends to their
daughter nodes to level 3. This process proceeds, while there are free processors and on each
processor is available more than one module.

The graph of the algorithm has 2 types of nodes. Nodes of 1st type correspond to numerical
modules and are designated in �gures by squares. Nodes of 2nd type correspond to polynomial
modules and are designated in �gures by circles.

Node of 1st type.
The node of 1st type with daughter nodes is shown in a �gure 2.

Fig. 2. Node of 1st type

The node of 1st type on an input receives a matrix A and the array intervals =
{[1,m1], . . . , [1,mt], [i1, i2]} . Numbers i1 and i2 set the �rst and last prime numbers from
the list {p1, . . . , ph} .

The node of 1st type builds a polynomial Fi1i2(x1, . . . , xt, y) on the remainders received
from daughter nodes. As a result it returns the polynomial Fi1i2 which is the characteristic
polynomial module {p1, . . . , ph} .

The node of 1st type sends numerical modules to two daughter nodes. The left node on
an input receives a matrix A and the array intervals1 = {[1,m1], . . . , [1,mt], [i1, is]} , the
right node � the matrix A and the array intervals2 = {[1,m1], . . . , [1,mt], [is + 1, i2]} , where
is = b(i1 + i2)/2c . If the daughter node has received only one numerical module it is node of
2nd type, else it is node of 1st type.

The node of 1st type receives two polynomials Fi1,is(x1, . . . , xt, y) ∈ Zd1[x1, . . . , xt, y] and
Fis+1,i2(x1, . . . , xt, y) ∈ Zd2[x1, . . . , xt, y] from daughter nodes, where d1 = pi1 · · · pis and d2 =
pis+1 · · · pi2 . After reception of these polynomials the father node computes the polynomial
Fi1i2(x1, . . . , xt, y) ∈ Zpi1 ···pi2 [x1, . . . , xt, y] .

Node of 2nd type.
The node of 2nd type with daughter nodes is shown in a �gure 3.

1418

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Fig. 3. Node of 2nd type

The node of 2nd type on an input receives a matrix A , the array

intervals = {[1,m1], . . . , [bs, es], [js+1, js+1], . . . , [i, i]}

and number s . Numbers i1 and i2 set the �rst and last prime numbers from the list
{p1, . . . , ph} . s denotes number of an active value, i gives number of a prime number from the
set of modules {p1, . . . , ph} , the interval [bs, es] gives polynomial modules of the active value
xs . If v < s then [bv, ev] = [1,mv] . If v > s then [bv, ev] = [jv, jv] , i.e. the interval [bv, ev]
contains one module xv − (jv + 1) .

The node of 2nd type builds a polynomial Fbses ∈ Zpi [x1, . . . , xs, y] on the polynomial
remainders received from daughter nodes.

Daughter nodes for a node of 2nd type are nodes of 2nd type. The left node on an input
receives a matrix A , the array intervals1 = {[1,m1], . . . , [bs, hs], [js+1, js+1], . . . , [i, i]} and the
number r1 of an active value, where hs = (bs + es)/2 . If bs < hs then the number r1 = s
else r1 = s − 1 . The right node � the matrix A , the array intervals2 = {[1,m1], . . . , [hs +
1, es], [js+1, js+1], . . . , [i, i]} and the number r2 . If hs + 1 < es then the number r2 = s else
r2 = s− 1 .

The node of 2nd type receives two polynomials

f1 ∈ Zpi [x1, . . . , xr1, y] and f2 ∈ Zpi [x1, . . . , xr2, y]

from daughter nodes. After reception of these polynomials the father node computes the
polynomial (fi) ∈ Zpi [x1, . . . , xs, y] .

4.2 Parallel algorithm

Let A ∈ Zn×n[x1, . . . , xt] ; k be the number of processors;
the function numbOfMod() compute the number of polynomial and numerical modules. The
function numbOfMod() uses formulas (1), (2);
the function send(a, b, ..., c, i) send a data a, b, ..., c from the current processor to the processor
i ;
the function recv(a, b, ..., c, i) receive a data a, b, ..., c on the current processor from the
processor i ;
the function go_down(intervals, r, boundlev) divide the task into two parts;
the function charPol(A, intervals, r) compute on one processor a polynomial g on one
processor g ful�lls if a characteristic polynomial of a matrix A to take product of module
from intervals ;
the function recoveryNewton(f1, f2, r1, r2) compute by means the Chinese remainder theorem
a polynomial f using remainders f1 and f2 ;

1419

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

the number boundlev �x the boundary level for the parallel process. Boundary level depends
on characteristics of a computing cluster. For the given task boundlev = log2 k because the
graph of the considered algorithm will be a binary tree.

Let's describe a method go_down .
go_down(intervals, r, boundlev) {

s = b(intervals[r] + intervals[r + 1])/2c;
intervals1 = intervals; r1 = r;
intervals2 = intervals; r2 = r;
intervals1[r + 1] = s;
intervals2[r] = s;
if (s == intervals1[r] + 1) r1− = 2;
if (s == intervals2[r + 1]− 1) r2− = 2;
boundlev −−;

}
The parallel algorithm consists of 2 log2 k levels. Let's describe operations which are ful�lled

on processors at each level.

1) Processor 0.
boundlev = log2 k;
intervals[] = numbOfMod();
r = k == 1? 2(t+ 1)− 3 : 2(t+ 1)− 1;
go_down(intervals2, r2, boundlev);
send(A, intervals2, r2, boundlev, k/2);

i) (i = 2, . . . , log2 k). Processors jk/2i−1 , j = 0, . . . , 2i−1 − 1 .

recv(A, intervals, r, boundlev, (j − 1)k/2i−1) for odd j ;
go_down(intervals, r, boundlev);
send(A, intervals2, r2, boundlev, (2j + 1)k/2i);

1 + log2 k) Processors j , j = 0, 1, . . . , k − 1 .
recv(A, intervals, r, boundlev, j − 1) for odd j ;
f = charPol(A, intervals, r);
send(f, j − 1) for odd j ;

i+ log2 k) (i = 2, . . . , log2 k). Processors j2i , j = 0, . . . , k/2i − 1 .
recv(f2, (2j − 1)2i−2);
f = recoveryNewton(f1, f2, r1, r2);
send(f, (2j + 1)2i) for odd j ;

Remark 4 If a matrix A ∈ Zn×n then intervals = [1, h] .

5 Experiments with the parallel algorithm

Experiments that were hold with characteristic polynomials of dense matrices of a numbers and
a polynomials were computed had been made. Elements of matrices got out in a random way.
All numerical coe�cients have the equal number of bits.

For estimation of e�ciency of parallel algorithms we enter the concept of an e�ciency. Let
tk be the computation time of the algorithm for the cluster with k processors. At transition

1420

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

from the cluster with n processors to the cluster with k processors, k > n , the e�ciency is
equal 100% , When tn/tk = k/n . The e�ciency is equal to zero, when tk = tn . To de�ne an
e�ciency of computations at other values tn/tk we de�ne the e�ciency as the time function
tk .

De�nition 1 E�ciency of computations on k processors in comparison with computation on
m processors is the function

αm,k =
tm/tk − 1

k/m− 1
· 100%.

In experiments 1 and 2 we used two parallel algorithms (algorithm N and algorithm D).
Algorithm D computes the characteristic polynomial of a matrix in a �nite �eld with the help
of Danilewsky's algorithm [7], algorithm N � with the help of an algorithm in the work [6].

Experiment 1 on a supercomputer MVS100k of Joint Supercomputer Center of the RAS
were made [13].

In the experiment we used dense integer matrix. The size of a matrix is 1000× 1000 . The
number of processors is from 16 to 512 .

The time and the e�ciency of computations are presented in the table 1.

Table 1

The time and the e�ciency of computations with the help of algorithms N and D for matrices
of an order 1000× 1000 and log2 a = 7 bits

Quantity of Algorithm N Algorithm D
processors Time tk, s E�ciency α16,k, % Time tk, s E�ciency α16,k, %
16 1849 1507
32 921 100 764 97
64 562 76 386 96
100 522 48 364 59
127 500 38 355 46
128 310 70 226 80
175 267 59 220 58
255 239 45 167 53
256 166 67 127 72
350 162 49 122 54
400 113 64 89 66
512 113 49 83 55

Apparently from table 1 if quantity of processors are divisible by 2p computation time
extremely decreases where p � natural number.

Experiment 2 was hold with a cluster from 16 processors of Intel Xeon 3 GHz, 1 Gb,
installed in a laboratory of algebraic calculations of the Tambov State University named after
G.R. Derzhavin. In the experiment we used dense integer matrix. The size of a matrix is
400× 400 and if a is a largest absolute value for coe�cients of matrix then log2 a = 20 bits.
The number of processors is from 2 to 16 . The time and the e�ciency of computations are
presented in the table 2.

1421

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Table 2

The time and the e�ciency of computation with the help of algorithms N and D for matrices
of an order 400× 400 and log2 a = 20 bits

Quantity of Algorithm N Algorithm D
processors Time tk, s E�ciency α2,k, % Time tk, s E�ciency α2,k, %
2 2740 1648
4 1369 100 816 102
6 1268 58 833 48
8 691 98 416 98
10 660 78 429 71
12 644 65 426 57
14 660 52 427 47
16 359 94 222 91

Experiments have shown that e�ciency (Table 2) is in limits from 50 % to 98 %. The
best e�ciency is reached, when the number of processors is a degree of number 2 .

In experiments 3 and 4 with polynomial matrices we used the parallel algorithm D
which computes the characteristic polynomial in a �nite �eld with the help of Danilewsky's
algorithm [7]. These experiments were hold with a supercomputer MVS100k of Joint Super-
Computer Center of the RAS.

In experiment 3 we used dense polynomial matrix of two variables: s = [2, 2] , a = 10 bits,
n = 50 . In experiment 4 we used dense polynomial matrix of two variables: s = [1] , a = 10
bits, n = 400 .

The times and the e�ciency of computations are presented in the table 3.

Table 3

The time and the e�ciency of computations with the help of algorithms N and D for
polynomial matrices of an order n× n , b = 10 bits is largest absolute value for numerical

coe�cients of matrix elements, m1, . . . ,mt is a hight degrees of variables x1, . . . , xt

n = 50, m1 = 2, m2 = 2 n = 400, m1 = 1
Quantity of Time, s E�ciency, %
processors tk α1,k

1 16558
2 8676 91
4 4548 88
8 2651 75
16 1626 61
32 1146 43
64 748 34
128 513 25
256 510 12

Quantity of Time, s E�ciency, %
processors tk α1,k

16 14514
32 8178 77
64 5101 61
128 2882 57
256 2046 40
512 1576 26
1024 1445 14
2048 1354 7
4096 1316 3

Experiments show that while increase in the number of processors increases the e�ciency
of calculations decreases. Then further multisequencing does not become favorable to some

1422

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

number of processors. Transferred blocks become so small that transfer time comes close to
computation time at boundary level. For example, for experiment 3 it is ine�ective to use the
considered parallel algorithm for computing the characteristic polynomials with usage of 256
and more processors as computation time does not decrease. The best computation time for
polynomial matrices (the order 50 × 50 , b = 10 bits is largest absolute value for numerical
coe�cients of matrix elements, [2, 2] of highest degrees of variables x1, x2) on cluster MVS100é
will be about 10 minutes, and for matrices (the order 400 × 400 , b = 10 , [1] of the highest
degrees of variables x1) will be about 25 minutes (Table 3).

6 Conclusion

Parallel implementation of algorithms allows to compute characteristic polynomials for matrices
of a big size. Therefore, it is important to construct e�ective parallel algorithms. Modular
arithmetics allows to make it as calculations on each module independently upon each other.
If algorithms based on the method of homomorphic images over a �nite �eld use the best
according to the number of operations algorithms for calculation of characteristic polynomials
it is possible to obtain e�ective parallel algorithms.

There were developed the parallel programs which realize two algorithms (algorithm N
and algorithm D) of computation of characteristic polynomials for numerical matrices and
one algorithm of computation of characteristic polynomials for polynomial matrices of many
variables . Algorithm N in a �nite �eld uses the algorithm from the work [13] which has the best
estimation of ring operations (∼ 7/3n3). Algorithm D uses Danilewsky's algorithm [7] which
has ∼ 2n3 operations in a �nite �eld. Graphs of algorithms N and D are binary trees. Therefore
it is e�ective to use the parallel computer which has 2p processors. Really, experiments showed
that the e�ciency of computations is the greatest at transition from 2p to 2p+1 processors,
it is 75% � 94% . Experiments showed that computation time of characteristic polynomials of
matrices by the algorithm D is 20-60% less, than on algorithm N.

Taking into account the obtained results of experiments in the ring of integers for calculation
of characteristic polynomials of matrices in the ring of polynomials the algorithm which uses
Danilewsky's algorithm in a �nite �eld has been realized. Experiments show that at increase
of the number of processors the e�ciency of calculations decreases. If the number of processors
increases, the number of transfers also increases, and the size of calculations at boundary level
decreases. For some number of processors the sending time will be equal to computation time at
boundary level, further parallelization is not e�ective. For characteristic polynomials computing
for matrices of the size 50× 50 over polynomials of two variables whose highest degrees equal
2 and the greatest absolute value of numerical coe�cients has 10 bits, it is not e�ective to
use the considered parallel algorithm on 128 and more processors. For matrices of the size
of 400 × 400 over linear polynomials of one variable and 10 bits greatest absolute value of
numerical coe�cients � on 512 and more processors.

The considered algorithms for computing of characteristic polynomials for matrices over
a ring of integers and over a ring of polynomials showed good scalability. It is supposed to
realize algorithms over a �nite �eld using Keller-Gehrig's algorithm [8] and Pernet-Storjohann
algorithm (2007) [9], to compare them with algorithms already realized and to reveal the most
e�ective algorithms.

1423

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

References

1. Le Verrier U.J.J. Sur les variations s�eculaires des �el�ements elliptiques des sept
plan�etes principales: Mercure, Venus, La Terre, Mars, Jupiter, Saturne et Uranus//J. de
Math�ematiques Pures et Appliquees. 1840. N. 4. P. 220-254.

2. Faddeev D.K., Faddeeva V.N. Computational methods of linear algebra. San Francisco:
W.H. Freeman, 1963.

3. Knut D. The art of computing programming. V. 2. M., 1977.

4. Seifullin T.R. Computation of determinants, adjoint matrices, and characteristic
polynomials without division//Cybernetics and Systems Analysis. 2003. V. 39, N. 6. P. 805-
815.

5. Malaschonok G.I. A computation of the characteristic polynomial of an endomorphism of
a free module//Zapiski Nauchnyh Seminarov POMI. 1999. V. 258. P. 101-114.

6. Pereslavtseva O.N. Method for computing of matrix characteristic polynomial//Tambov
University Reports. Natural and Technical Sciences. 2008. V. 13. Issue 1. 2008. P. 131-133.

7. Danilewsky A.M. About numerical solution of a secular equation//Rec. Math. 1937.
V. 2(44). N. 1. P. 169-172.

8. Keller-Gehrig W. Fast algorithms for the characteristic polynomial//Theoretical computer
science. 1985. V. 36. P. 309�317.

9. Pernet C., Storjohann A. Faster algorithms for the characteristic polynomial//ISSAC.
2007. P. 307�314.

10. Buchberger B., Collins G. E., Loos R. Computer Algebra � Symbolic and Algebraic
Computation. Vienna; New York: Springer-Verlag, 1982.

11. Dumas J.-G., Pernet C., Wan Z. E�cient Computation of the Characteristic Polynomial
// ISSAC'05, July 24�27, 2005, Beijing, China, Beijing, 2005. P. 140-147.

12. Pereslavtseva O.N. Computation of characteristic polynomials for matrices over polynomial
ring//International Conference Polynomial Computer Algebra. St. Petersburg, PDMI RAS,
2009. P. 35-39.

13. Pereslavtseva O.N. On the computation of characteristic polynomial
coe�cients//Numerical Methods and Programming. 2008. V. 9. P. 366-370. URL:
http://num-meth.srcc.msu.ru/.

1424

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

GRATITUDES: Supported by the Sci. Program Devel. Sci. Potent. High. School, RNP
2.1.1.1853.

Accepted for publication 7.06.2010.

ÏÀÐÀËËÅËÜÍÛÉ ÀËÃÎÐÈÒÌ ÂÛ×ÈÑËÅÍÈß
ÕÀÐÀÊÒÅÐÈÑÒÈ×ÅÑÊÈÕ ÏÎËÈÍÎÌÎÂ ÌÀÒÐÈÖ, ÎÑÍÎÂÀÍÍÛÉ ÍÀ

ÌÅÒÎÄÅ ÃÎÌÎÌÎÐÔÍÛÕ ÎÁÐÀÇÎÂ

c© Îêñàíà Íèêîëàåâíà Ïåðåñëàâöåâà
Òàìáîâñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò èì. Ã.Ð. Äåðæàâèíà, Èíòåðíàöèîíàëüíàÿ, 33,

Òàìáîâ, 392000, Ðîññèÿ, ïðîãðàììèñò ëàáîðàòîðèè àëãåáðàè÷åñêèõ âû÷èñëåíèé,
e-mail: Pereclavtseva@rambler.ru

Êëþ÷åâûå ñëîâà: âû÷èñëåíèå õàðàêòåðèñòè÷åñêèõ ïîëèíîìîâ ìàòðèö; ïàðàëëåëü-
íûé àëãîðèòì; ìåòîä ãîìîìîðôíûõ îáðàçîâ; êëàñòåð.
Ïðåäëàãàþòñÿ ïàðàëëåëüíûå àëãîðèòìû äëÿ âû÷èñëåíèÿ õàðàêòåðèñòè÷åñêèõ ïî-
ëèíîìîâ öåëî÷èñëåííûõ è ïîëèíîìèàëüíûõ ìàòðèö. Äàííûå àëãîðèòìû îñíîâàíû
íà ìåòîäå ãîìîìîðôíûõ îáðàçîâ, ïðèìåíåííîì êàê ê êîëüöó öåëûõ ÷èñåë, òàê è
ê êîëüöó ïîëèíîìîâ ìíîãèõ ïåðåìåííûõ. Äëÿ ïðèìåíåíèÿ ìåòîäà ãîìîìîðôíûõ
îáðàçîâ íàõîäèòñÿ âåðõíÿÿ îöåíêà ÷èñëîâûõ êîýôôèöèåíòîâ õàðàêòåðèñòè÷åñêîãî
ïîëèíîìà. Îáñóæäàþòñÿ ðåçóëüòàòû ýêñïåðèìåíòîâ ñ ïàðàëëåëüíûìè àëãîðèòìà-
ìè, ïðîâåäåííûõ íà êëàñòåðå ÌÂÑ-100Ê â ÌÑÖ ÐÀÍ.

1425

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

UDC 519.688

OUT-OF-CORE PARALLEL POLYNOMIAL ARITHMETIC

c© Alexey Gennadievich Pozdnikin
Tambov State University named after G.R. Derzhavin, Internatsionalnaya, 33, Tambov,

392000 Russia, Post-graduate Student of Computer and Mathematical Modeling Department,
e-mail: pozdalex@mail.ru

Key words: polynomials on the external data carrier; polynomial arithmetic; the parallel
algorithm of multiplication.
This paper presents the description of structure of polynomials on the external
data carrier. The algorithms for addition and parallel multiplication of polynomials
are scrutinized. The results of experiments conducted with parallel multiplication of
polynomials on cluster are given.

1 Introduction

Polynomials are the main objects in symbolic computation [1]. The e�ectiveness of computer
algebra system depends on the e�ectiveness of polynomial procedures.

Symbolic computations are characterized as problems of high computational complexity.
Therefore, it is necessary to develop parallel algorithms and conducting calculations on
multiprocessor computer systems.

In the articles [3], [4] there is information about parallel polynomial algorithms. Traditional
systems of computer algebra, such as Mathematica, can operate on polynomials, that do go
into RAM. However, these systems are unsuitable for operation with large polynomials, which
need more memory and cannot be written into RAM. Therefore, providing operating on such
polynomials is one of the primary tasks of parallel computer algebra.

One of such systems that can operate on so large mathematical expressions is ¾FORM¿.
It is a system for symbolic manipulation of algebraic expressions specialized in handling with
very large expressions of millions of terms in an e�cient and reliable way [5].

In the article [6] the representation of the large polynomials is discussed, the algorithms
realising an implementation of main arithmetical operations are considered and the results of
the experiments are also presented there.

This article describes the structure of the polynomial, which is stored on the external data
carrier. Algorithms of addition and parallel multiplication of such polynomials are considered
there.

You may also get acquainted with the results of experiments which were carried out on
operation of parallel multiplication of polynomials on cluster of JSC RAS. It is presented in
graphics.

1426

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

2 The structure of polynomials on the external data carrier

We used two one-dimensional arrays to store one polynomial. The �rst array stores only the
nonzero coe�cients of a polynomial and the second array stores the degrees of each variables. If
there are ¾var¿ variables in a polynomial, the second array contains ¾var¿ times more elements
than the �rst. Monomials in the polynomial are stored in reverse lexicographical order. This
order is accepted, that arithmetic algorithms with polynomials worked faster. You can learn
about other structures of polynomials in article [7].

This polynomial will be stored on external data carrier in two �les. Monomials of a
polynomial in the form of arrays bytes will be saved in one �le. The second �le will contain
the type of coe�cient, i.e. the set of whole or rational numbers which polynomial coe�cients
are taken from. Then, the number of variables of the polynomial (vars), the total number of
nonzero monomials in the polynomial and an array of integers will be written in the second �le.
The array of integers contains the information about number of bytes, which each monomial
of the polynomial occupies on a hard disk. We will call such polynomial the �le polynomial,
which are stored in external memory.

We should be able to operate with �le polynomials and to send them between cores. For this
purpose, we will operate small fragments of �le polynomials, which can be located in RAM.

3 Addition of �le polynomials

Operation of addition of �le polynomials is implemented in the form of consecutive algorithm.
This algorithm consists of three main parts:

1. We compare variables in �le polynomials. If one of the �le polynomials has more the
number of variables, the monomials, that contain these older variables will be recorded
in the resulting �le. Otherwise, we go to the step 2.

2. We compare exponents of variables in each monomial. If exponents of variables in the
monomials are equal, the coe�cients are added and a new monomial with the same degrees
is recorded in the �le. If the sum of coe�cients is equal to zero, then the monomial at
this degree is not written into �le. If the exponents of variables in one of the monomials
will be greater, then this monomial can be written in the �le, and the smallest one is
compared with the following one. Transition to the next step will be done when the �le
polynomials will be read to the end.

3. We read and write into the resulting �le of the remaining monomials of one of polynomials.

Let
p1 = 9x2y2 + 4x2y − 8xy + x− 6,

p2 = −8x2y2z3 − x2y2z2 − 4x2y − 5x3 + 3xy.

We consider example of addition p(1) and p(2) .
Step 1. We write into the �le: −8x(2)y(2)z(3)− x(2)y(2)z(2).
Step 2. We write into the �le: 9x(2)y(2)− 5x(3)− 5xy.
Step 3. We write into the �le: x− 6.
As a result, we obtain the sum of two polynomials in form of a sorted �le polynomial.

1427

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

If we view p(1) + p(2) then the following will be written in the �le:

p = −8x2y2z3 − x2y2z2 + 9x2y2 − 5x3 − 5xy + x− 6.

4 The parallel algorithm of multiplication of �le polynomials

The procedure of multiplication of �le polynomials is recursive. Dichotomous division of
polynomials on the part present a basis of the recursive algorithm.

The condition is a way of the exit out of the recursion, if it is satis�ed, then the multiplication
of individual parts of polynomials can be made in memory of the given size.

The value of free RAM is set by a variable freeMemory . Procedure getMemForMul
estimates size of the memory that may be required to multiplication of two polynomials or
their parts. The result returned by the procedure getMemForMul is compared to the variable
freeMemory .

The binary tree is the graph of the recursive algorithm. The multiplication of parts of
polynomials is performed on its leaves.

The interval with numbers of free cores is set in root node. The parallel algorithm of splitting
of polynomials by parts is accompanied by splitting the interval with numbers of cores. If set
of free cores is empty and multiplication of parts of polynomials cannot be done in memory,
the consecutive recursive algorithm on one core will be caused.

We consider a parallel algorithm for multiplication of �le polynomials A and B . Algorithm's
graph is presented at Figure 1.

Fig. 1. The graph of parallel algorithm of multiplication of polynomials A and B and
distribution of four cores to nodes of the tree

Let A = (a1 + a2) and B = (b1 + b2) be two �le polynomial that we want to multiply.
The product can be found as the sum of four items: a1 ∗ b1 + a1 ∗ b2 + a2 ∗ b1 + a2 ∗ b2 . The
calculation of each of the four items can be executed on a separate core.

We choose greater polynomial and splitted it by two parts. Parts should occupy in the
memory an equal amount of bytes. Let the polynomial A > B , ie A occupies more memory
than B . On the �rst step we divide a polynomial A into two parts a1 and a2 , ie A = a1 +a2 .
The interval with numbers of cores [0, 3] will be divided into two intervals [0, 1] and [2, 3] . We
received two nodes a1 ∗B and a2 ∗B . These operations cannot be executed in RAM, therefore
division of polynomials into parts will be continued.

1428

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

We choose greater of polynomials a1 and a2 . Let B > a1 and B > a2 . Then we divide B
into parts b1 , b2 and calculate products a1 ∗ b1 , a1 ∗ b2 , a2 ∗ b1 , a2 ∗ b2 on each core.

Let we have reached leaf nodes if multiplication is possible to execute in RAM on cores 0,
1, 2, 3, accordingly.

During the sending the calculated fragments back to the root, their addition will be done:
a1 ∗ b1 + a1 ∗ b2 = a1 ∗B and a2 ∗ b1 + a2 ∗ b2 = a2 ∗B . The result of multiplication will be the
sum a1 ∗B + a2 ∗B = A ∗B , calculated at the root.

We consider the program code of procedures for parallel multiplication of the �le polynomials,
implemented on language Java.

We introduce the following designation:
Polynom � is a type of polynomial, which is stored in memory.
FPolynom � is a type of �le polynomial.
Subset � is a set of numbers of available cores.
BasePolynomDir � is a class that is used to create the directory where the �le will be

written polynomials.
By default it is a directory ”/tmp/fpolynoms/” in operating systems Linux and ”C :

\temp\fpolynoms” in Windows.
In algorithm of parallel multiplication of �le polynomials the procedures are used:
1)Polynom mulS(Polynom pol2) . The procedure multiply polynomials in RAM.
2)Polynom toPolynom(long skipBytes, long bytes) . The procedure reads a part of the

�le polynomial and writes it into RAM. Parametres: skipBytes � quantity of bytes which will
be skipped, bytes - bytes quantity which will be read. Result is a polynomial in RAM.

3)FPolynom toFPolynom(File filename, Element itsCoeffOne) . The procedure reads
a polynomial from memory and writes down on a hard disk, at the speci�ed path �lename.
itsCoe�One - is a unit in the �eld of the coe�cients of the polynomials. The result is a
polynomial, written in external memory.

4) long getMemForMul(FPolynom fpol1, FPolynom fpol2, long s1, long n1, long s2,
long n2) . The procedure returns the number of bytes which can be received as a result of
multiplication of parts of polynomials fpol1 and fpol2 . s1 , s2 is a bytes which will be
skipped in the polynomials fpol1 and fpol2 . n1 , n2 is a bytes which will be read in the
polynomials fpol1 and fpol2 .

5) long getByteLength() . The procedure returns the size of memory in bytes that the �le
polynomial occupied.

6)Subset[] divideOnParts(int n) . The procedure splits an interval into n parts and returns
an array of intervals.

7) long middlePolynom(long skipBytes, long middle) . The procedure returns the number
of bytes approximately equal to half of a memory size which occupies a part of a �le polynomial.
skipBytes is the bytes needs to be skiped a �le polynomial, middle - is the middle of a part
of the �le polynomial.

8)Ssend(Object obj, int proc, int tag) . The procedure sends an object obj , to the core
with number of proc , and of tag is the tag .

9)Recv(int objType, intproc, int tag) . The procedure receives a object obj , from the core
with number of proc, and of tag is the tag .

10)SendFPolynom(FPolynom pol, long skipBytes, long numbytes, intproc) .
The procedure sends numbytes bytes of a �le polynomial pol to the core with number proc.
skipBytes of bytes will be skiped from the �le beginning.

1429

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

11)RecvFPolynom(File dir, int proc) - The procedure receives a �le polynomial from the
core with number proc and writes down his on a disk in the directory dir .

12) add(String dir1, String dir2, F ile fdir) . The procedure adds �le polynomials which
are in the directories dir1 , dir2 and writes the result in fdir .

The program code of procedure of multiplication of �le polynomials can be seen in Fig. 2.

public static FPolynom multiply(FPolynom fpol1,
FPolynom fpol2, File fres) throws Exception{

int myrank = MPI.COMM_WORLD.Rank();
if(myrank == 0){

int size = MPI.COMM_WORLD.Size();
Subset procs = new Subset(new int[]{0,size-1});
multiplyRec(fpol1, fpol2, 0, fpol1.getByteLength(),
0, fpol2.getByteLength(), fres, procs, 0)}

else{
Status st = MPI.COMM_WORLD.Probe(MPI.ANY_SOURCE, MPI.ANY_TAG);
if(st.tag==tag_true){

int parent = (Integer)LLP.Recv(LLP.INT_TYPE, MPI.ANY_SOURCE, tag_true);
BasePolynomDir dir = new BasePolynomDir();
File f1 = new File(dir.createPolynomDir("proc"+myrank), "p1");
File f2 = new File(dir.createPolynomDir("proc"+myrank), "p2");
File f3 = new File(dir.createPolynomDir("proc"+myrank), "p3");
int[] arr = (int[])LLP.Recv(LLP.INT_ARRAY_TYPE,
parent, tag_proc);
Subset process = new Subset(arr);
LLP.RecvFPolynom(f1, parent);
LLP.RecvFPolynom(f2, parent);
FPolynom p1 = new FPolynom(f1);
FPolynom p2 = new FPolynom(f2);
multiplyRec(p1, p2, 0, p1.getByteLength(),
0, p2.getByteLength(), f3, process, myrank);
LLP.SendFPolynom(new FPolynom(f3), 0,
f3.length(), parent); }}

return new FPolynom(fres);}
Fig. 2. The code of procedure of multiplication of �le polynomials

Procedure multiply receives on an input two �le polynoms fpol1 , fpol2 and a directory
fres in which the result of multiplication will be written down.

The procedure Size() determines the number of core and puts his in the variable myrank.
On the core with number zero (myrank=0), the variable size accepts value of total number

of cores, numbers of cores will be contain in an interval procs from 0 to size− 1 .
On zero core recursive procedure of multiplication multiply parts of polynoms fpol1 , fpol2

is started. The remaining cores, with numbers not equal to zero, waiting for a message with
tag equal to the tag_true .

When a message with tag_true will come, then the number of core from which it came,
the interval with numbers of available cores, and two polynomial will be received.

1430

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

private static FPolynom multiplyRec(FPolynom fpol1, FPolynom fpol2,
long skip1, long length1, long skip2, long length2,
File fres, Subset proc, int myrank) throws Exception{
File bufres = fres;
FPolynom result = new FPolynom(fres);
String namedirA, namedirB;
int l1 = end1-st1, l2 = end2-st2;
if(getMemForMul(fpol1, fpol2, skip1, length1, skip2, length2)<freeMemory){

fpol1.toPolynom(skip1, length1).mulS(
fpol2.toPolynom(skip2, length2)).toFPolynom(fres, itsCoe�One);
if(proc.cardinalNumber()>1)

for(int i=1; i<proc.cardinalNumber(); i++)
LLP.Isend(new Integer(0), proc.toArray()[i],
tag_false);}

else{ long s1=skip1, s2=skip2, e1=length1, e2=length2,
s11=0, s22=0, e11=e1, e22=e2;
Subset[] process;
if(proc.cardinalNumber()>1){ process = new Subset[2];

process = proc.divideOnParts(2);
LLP.Ssend(new Integer(myrank), process[1].toArray()[0], tag_true);
LLP.Ssend(process[1].toArray(), process[1].toArray()[0], tag_proc);
if(length1>=length2){ e1 = fpol1.middlePolynom(skip1, e1/2);

LLP.SendFPolynom(fpol1, s1, e1, process[1].toArray()[0]);
LLP.SendFPolynom(fpol2, s2, e2, process[1].toArray()[0]);
s11 = e1+skip1; e11 = length1-e1; s22=skip2;

} else{ LLP.SendFPolynom(fpol1, s1, e1, process[1].toArray()[0]);
e2 = fpol2.middlePolynom(skip2, e2/2);
LLP.SendFPolynom(fpol2, s2, e2, process[1].toArray()[0]);
s22 = e2+skip2; e22 = length2-e2; s11=skip1;}}

else{ process = new Subset[1];
process[0] = proc;
if(length1>=length2){ e1 = fpol1.middlePolynom(skip1, e1/2);

s11=e1+skip1; e11=length1-e1; s22=skip1;
}else{ e2 = fpol2.middlePolynom(skip2, e2/2);

s22=e2+skip2; e22=length2-e2; s11=skip1;}}
�leA = fres.getAbsolutePath()+"a";
bufres = new File(�leA);
multiplyRec(fpol1, fpol2, s11, e11, s22, e22, bufres, process[0], myrank);
�leB = fres.getAbsolutePath()+"b";
bufres = new File(�leB);
if(proc.cardinalNumber()>1){ LLP.RecvFPolynom(bufres, process[1].toArray()[0]);
else{ multiplyRec(fpol1, fpol2, s1, e1, s2, e2, bufres, process[0], myrank); }
FPolynom.add(�leA, �leB, fres);

return result;
}
Fig. 3. The code the recursive procedure of the multiplication of parts of �le polynomials

1431

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Recursive procedure of multiplication of the received polynomials will be caused. The result
of multiplication is sent back, to the core from which polynomials have been received. If the
message with tag tag_true is not received by the core then he is remains not used.

4.1The recursive procedure of multiplication of parts of �le polynomials

The recursive procedure of multiplication will have following arguments:

1) two �le polynomials fpol1 and fpol2 ;

2) number of bytes which is necessary to skip in the �le polynomial fpol1 ;

3) number of bytes which is necessary to read from the �le polynomial fpol1 ;

4) number of bytes which is necessary to skip in the �le polynomial fpol2 ;

5) number of bytes which is necessary to read from the �le polynomial fpol2 ;

6) the directory fres in which the result of multiplication will be written down;

7) the interval of procs which contains numbers of cores;

8) the number of node on which procedure is caused.

The program code the recursive procedure of multiplication of �le polynomials can be seen
in Figure 3.

After initialization of some variables, there is a condition check. The result of multiplication
of polynomials or their parts must will be located in RAM, ie the volume freeMemory . If this
condition is satis�ed, then they are multiplied in memory, the result is returned. All untapped
cores sent a message with tag equal tag_false , denoting the end of the operation.

If function returns value exceeding freeMemory, then greater of the polynomials will be
splitted on two parts. One of pairs of parts from the �le polynomials remains on one node,
and the second pair is sent to another core. Division of polynomials into parts will be will
proceed until product of these parts will be located in RAM in volume freeMemory. After
parts of polynomials have been multiplied, product will be sent the core from which they have
been received. The core will calculate the sum of the received polynomials. On zero core last
operation of addition of polynomials will be made.

5 Experiments

The program complex has been developed. The experiments were conducted on the cluster of
MV S− 100K in the MSC Russian Academy of Sciences. At experiments we used polynomials
of two variables, received in a random way, with coe�cients not greater than 103 by absolute
value and quantity of monomials 25 ∗ 104 . For parallel algorithm it is accepted that free RAM,
ie freeMemory it is equal 32 Mb.

Let:

T0 � The time of calculations on n cores;

Tk � The time of calculations on k cores;

k > n .

The speedup of calculations at transition from n cores to k cores will be assumed by the
formula a(Tk) = (1 − T0/Tk)/(1 − k/n) ∗ 100 . The speedup is measured in percents. In this
experiment n = 8 . The results of experiments are presented in Tables 1 and 2.

1432

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Table 1

The table of values of run�time of operation of multiplication of polynomials on n cores and
speedups of calculations on n cores in comparison with calculations on one core. One core is

used on each node

number of cores time, sec e�ciency, %
8 2644 �
16 1719 53,8
32 1176 41,6
64 785 33,8
128 577 23,9

Table 2

The table of values of run�time of operation of multiplication of polynomials on n cores and
speedups of calculations on n cores in comparison with calculations on one core. Eight core is

used on each node

number of cores time, sec e�ciency, %
8 3713 �
16 2578 44,0
32 1688 40,0
64 1009 38,3
128 716 27,9

Fig. 4. The graph of dependence of run�time of operation of multiplication of polynomials
from number of cores

1433

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

Fig. 5. E�ciency of run-time of operation of multiplication on k �core cluster, in comparison
with calculations on n �core cluster

6 Conclusions

We can see on the graph in Figure 4 that with an increase of number of cores, run time of
operation of multiplication decreases.

There are 8 cores on each node on the cluster ÌÂÑ�100Ê. If we use single core on 8 nodes,
operation will be executed faster than when using 8 cores on one node. Because 8 cores on one
node use one hard disk. When we set the task for 8 nodes, and use only 1 core on the node,
instead of 8 possible, the most of cores in this case will not work. Therefore, use of all cores on
the node is more pro�table and is more economical.

On the graph of Figure 5 we can see that the speedup time of the operation of multiplication
decreases with increasing number of cores. If we continue to increase quantity of cores, speedup
becomes close to zero. In the above example, we not used more than 128 cores when speedup
of calculations in comparison with 8 cores will be less than 30 %.

The realised parallel algorithm of multiplication of �le polynomials has shown the e�ciency
and can be applied dealing with problems which use multiplication of polynomials of the big
sizes.

References

1. Pankratiev E.V. Elements of computer algebra//Internet university of an information
technology. Laboratory of knowledge. 2007. P. 248.

2. Malaschonok G.I., Avetisan A.I., Valeev U.D., Zuev M.S. Parallel algorithmes of computer
algebra // Proceeding of the institute of system programming. 2004. V. 8. Issue 2. P. 169-
180. (Russian).

1434

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

3. Valeev U.D., Malaschonok G.I. On the forms of polynomials for parallel calculations//
Tambov University Reports. Natural and Technical Sciences. 2004. V. 9. N. 1. P. 149-150.
(Russian).

4. Malaschonok G.I., Valeev Y.D. Parallel polynomial recursive algorithms// International
conference Polynomial Computer Algebra. St. Petersburg: PDMI RAS, 2008. P. 41-45.
(Russian).

5. Fliegner D., Retey A., Vermaseren J.A.M. Parallelizing the symbolic manipulation
program FORM. URL: http://arXiv.org/abs/hep-ph/0007221.

6. Pozdnikin A.G. File polynomials// Tambov University Reports. Natural and Technical
Sciences. 2009. V. 14. Issue 4. P.783-785.

7. Yan T. The Geobucket Data Structure for Polynomials// J. Symbolic Computation. 1998.
P. 285-293.

GRATITUDES: Supported by the Sci. Program Devel. Sci. Potent. High. School, RNP
2.1.1.1853.

Accepted for publication 7.06.2010.

ÏÀÐÀËËÅËÜÍÛÅ ÏÎËÈÍÎÌÈÀËÜÍÛÅ ÂÛ×ÈÑËÅÍÈß Ñ
ÈÑÏÎËÜÇÎÂÀÍÈÅÌ ÂÍÅØÍÅÉ ÏÀÌßÒÈ

c© Àëåêñåé Ãåííàäüåâè÷ Ïîçäíèêèí
Òàìáîâñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò èì. Ã.Ð. Äåðæàâèíà, Èíòåðíàöèîíàëüíàÿ, 33,

Òàìáîâ, 392000, Ðîññèÿ, àñïèðàíò êàôåäðû êîìïüþòåðíîãî è ìàòåìàòè÷åñêîãî
ìîäåëèðîâàíèÿ, e-mail: pozdnikin@mail.ru

Êëþ÷åâûå ñëîâà: ïîëèíîì íà âíåøíåì íîñèòåëå; óìíîæåíèå ïîëèíîìîâ; ïàðàëëåëü-
íûé àëãîðèòì.
Â ñòàòüå ïðèâîäèòñÿ îïèñàíèå ñòðîåíèÿ ïîëèíîìà, êîòîðûé õðàíèòñÿ íà âíåøíåì
íîñèòåëå. Ðàññìàòðèâàþòñÿ àëãîðèòìû ñëîæåíèÿ è ïàðàëëåëüíîãî óìíîæåíèÿ òà-
êèõ ïîëèíîìîâ. Ïðèâîäÿòñÿ ðåçóëüòàòû ýêñïåðèìåíòîâ, êîòîðûå ïðîâîäèëèñü íà
êëàñòåðå.

1435

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

UDC 517.44+519.63

PARALLEL COMPUTING FOR FOURIER TRANSFORM WITH
DISCONTINUOUS COEFFICIENTS

c© Oleg Emanuilovich Yaremko
Penza State Pedagogic University named after V.G. Belinsky, Lermontova, 37, Penza, 440026,
Russia, Candidate of Physics and Mathematics, Professor, Head of Mathematical Analysis

Department, e-mail: yaremki@yandex.ru

c© Natalia Nikolaevna Yaremko
Penza State Pedagogic University named after V.G. Belinsky, Lermontova, 37, Penza, 440026,
Russia, Candidate of Physics and Mathematics, Associate Professor of Mathematical Analysis

Department, e-mail: yaremki@yandex.ru

Key words: Fourier transform with dividing points; direct Cauchy problem; inverse
Cauchy problem; heat conduction equation.
A parallel computing algorithm is researched in the article. It allows �nding a solution
for the direct and inverse problem of the temperature �eld structure in semi-in�nite
piece-homogeneous rod. The Fourier transform method with dividing points provides
the parallel computing for the solution of the speci�ed problems.

1 Introduction

U�yand Y.S. proposed the Fourier transforms with discontinuous coe�cients in the '70s of 20th
century [1]. This theory was further developed in M.P. Lenyuk's works [2]. Multidimensional
case is considered by V.A.Il'in see, [3]. Vector case is researched in O.E Yaremko's works [4].
The Fourier transforms with discontinuous coe�cients are applied for the direct and inverse
problems of mathematical physics.
The integral Fourier transforms are made in the following way. Let u (x, λ) and u∗ (ξ, λ) be
respective solutions for the Sturm-Liouville problem and dual problem for the Fourier's operator

B =
n∑
j=1

θ (x− lj−1) θ (lj − x)A2
j

d2

dx2
+ θ (x− ln)A2

n+1

d2

dx2

on the real semi-axis with dividing points 0 6 l0 < l1 < . . . < ln < ln+1 = ∞, where Am−
square matrices of the size p× p , θ (x)− unit step function.
Expansion theorem into own functions of the Fourier's operator is proved, therein[3].

Theorem 1 (Expansion theorem).Let's suppose vector- function f (x) as de�ned, continuous,
absolutely integrated on the set I+

n and has the limited variation on the set I+
n . Decomposition

formula takes the form

f (x) =
2

π

∫ ∞
0

λu (x, λ)

(∫ ∞
l0

u∗ (ξ, λ) f (ξ) dξ

)
dλ, x ∈ I+

n ,

1436

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

where

I+
n =

{
x :
⋃n+1

j=1
(lj−1, lj)

}
.

The direct Fn+ and inverse F−1
n+ integral Fourier transforms with n dividing points are de�ned

in the expansion theorem

Fn+ [f] (λ) =

∞∫
l0

u∗ (ξ, λ) f (ξ) dξ ≡ f̄ (λ) , (1)

F−1
n+

[
f̄
]

(x) ≡ 2

π

∞∫
0

λu (x, λ) f̄ (λ) dλ = f (x) . (2)

In the speci�c case the direct Fn+ and inverse F−1
n+ transforms turn into the cos− and sin−

transforms.
Modern mathematical models often lead to necessity of solution of di�erential equation systems
for partial derivatives. Problems with piecewise constant coe�cients arise at modeling processes
of the multilayered environments. The vector integral Fourier transforms on the real semi-axis
with dividing points are necessary mathematical methods for solution of such systems.
Some authors applied the Laplace transform [7] for solution of the speci�ed problems. Solution
of the problem is expressed by means of line integral even in a scalar case. The calculation
of line integral is quite a di�cult task and it requires appropriate skills.Actually the arising
di�culties are insuperable in the vector case.
FFT method (Fast Fourier Transform) is realized in [8] for the Poisson equation in a circle. Fast
algorithms of solution of direct and inverse problems for the vector heat conductivity equation
with piecewise constant coe�cients are constructed in the sec.2 and in the sec.3 respectively.
The purpose of this article is to develop a method fast singular vector Fourier transform. The
o�ered method

-is an alternative to a classical net method;
-gives the standard engineering of solution of direct and inverse problems of mathematical

physics with piecewise constant coe�cients;
-admits the parallel computing processes.

Vector integral transforms of cos− and sin− types are constructed in sec.1.
Parallel computing processes of solution in direct problem of vector heat conductivity equation
is shown in the sec.2 . Method of singular vector integral Fourier transforms is applied for
solution of the inverse vector heat conductivity problem. It is well known that this problem is
ill-posed one. Inverse heat conduction problem has been researched by many authors, see [9].
Iterative algorithm is proposed for solving of inverse problem in the sec.3.

2 Sturm-Liouville Problem

The Sturm-Liouville problem is to de�ne the nontrivial solution of the mixed boundary value
problem for the ordinary di�erential equation(

d2

dx2
+ q2

m

)
um = 0, q2

m = A−2
m λ2, m = 1, n+ 1;x ∈ I+

n (3)

1437

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

by boundary conditions(
α0

11

d

dx
+ β0

11

)
u1

∣∣∣∣
x=l0

= 0, ‖un+1‖ |x=∞ < ∞ (4)

and contact conditions in dividing points(
αkj1

d

dx
+ βkj1

)
uk =

(
αkj2

d

dx
+ βkj2

)
uk+1, x = lk, k = 1, n, j = 1, 2. (5)

Here -um vector- function of size p× 1 , Am, α
k
ji− square matrices of the size p× p .

Let us set

ϕn+1 (x) = exp (qn+1xi) ; ψn+1 (x) = exp (−qn+1xi) ; qn+1 = A−1
n+1λ.

Let us de�ne the other n-function pairs (ϕk, ψk) , k = 1, n as sequentially inductive relations[
αkj1

d

dx
+ βkj1

]
(ϕk, ψk) =

[
αkj2

d

dx
+ βkj2

]
(ϕk+1, ψk+1) , k = 1, n, j = 1, 2.

Also let us designate

0
ϕ
1

(λ) =
[
α0

11
d
dx

+ β0
11

]
ϕ1 (x, λ)

∣∣∣∣
x=l0

,
0

ψ
1

(λ) =
[
α0

11
d
dx

+ β0
11

]
ψ1 (x, λ)

∣∣∣∣
x=l0

,

Ωk =

(
ϕk ψk
ϕ
/
k ψ

/
k

)
.

Condition of unrestricted solvability of the problem (3) - (5) we will consider ful�lled further

det
0

ϕ1 (λ) 6= 0, λ ∈ (0,∞) .

For the Sturm-Liouville problem (3) - (5) by means of unit step function θ (x) we construct
an appropriate spectral function u (x, λ) :

u (x, λ) =
n∑
j=1

θ (x− lj−1) θ (lj − x) uj (x, λ) + θ (x− ln) un+1 (x, λ) , (6)

where

uj (x, λ) = ϕj (x, λ)
0

ϕ−1
1 −ψj (x, λ)

0

ψ−1
1 .

The spectral function of the dual to the Sturm-Liouville problem (3) - (5) takes the following
form

u∗ (x, β) =
n∑
j=1

θ (x− lj−1) θ (lj − x) u∗j (x, β) + θ (x− ln) u∗n+1 (x, β) , (7)

where

u∗j (x, β) =

(
0
ϕ
1

(β) ,
0

ψ
1

(β)

)
Ω−1
j (x, β)

(
0
E

)
A2
j , j = 1, n+ 1.

The direct Fn+ and inverse F−1
n+ Fourier transforms on the real semi-axis [3] with n dividing

points take the form (1), (2), where

f (x) =
n∑
k=1

θ (lk − x) θ (x− lk−1) fk (x) + θ (x− ln) fn+1 (x).

1438

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

3 Vector Heat Conductivity Equation

The structure of a non-stationary temperature �eld of semi-in�nite non-homogeneous rod takes
the form [3]

vi (t, x) =

∫ ∞
0

exp
(
−λ2t

)
ui (t, x)F (λ) dλ, t > 0, li−1 < x < lj (8)

F (λ) =
n∑
j=1

Fj (λ) , Fj (λ) =

∫ lj

lj−1

u∗j (ξ, λ) fj (λ) dλ,

where fj (ξ) -is an initial distribution of temperature in j-a layer , vi (t, x) -is a temperature
distribution in i-a layer at the moment t .

First step. The processor Pj calculates the j component of the eigenfunction uj (λ, x) and
the spectral functionFj (λ) .

Second step. Processors P1, . . . , Pn transmit data to the processor Pi . Processor Pi
calculates the values of temperature in the i-layer according to the formula (8) .

4 Inverse Vector Heat Conductivity Equation

Let's �nd the solution of the inverse heat conduction problem.The problem is to de�ne
initial distribution of the temperature �eld f (x) in the equation (8) according to the known
distribution v (τ, x) in a moment of time τ . Applying Fourier transform (1) - (2) in the equation
(8), we obtain:

K (λ) f̄ (λ) = v̄ (λ) ,

where K (λ) = exp (−λ2τ) .
We introduce the grid of nodes: λk = −A + kA

N
, k = 0, 1, . . . , 2N , were A �is quite a

large number. Let's consider the iterative process [6]:

f̄n+1 (λk) = f̄n (λk)− γk
(
K (λk) f̄n (λk)− v̄ (λk)

)
, (9)

k = 0, 1, . . . , 2N, n = 0, 1, . . . , where γk meets the following conditions:

qk = |1− γkK (λk)| 6
1

2
, k = 0, 1, . . . , 2N.

It is always possible with this kind of function. We can show that for each
k (k = 0, 1, . . . , 2N) the speed converge iterations are Aqnk .
Then we �nd the function f (x) on the quadrature formula using the inverse Fourier

transform.
First step. The processor Pj calculates the j component of the spectral function vj (λ) .
Second step. Processors P1, . . . , Pn transmit function values vj (λ) to the processor

P0 . Processor P0 performs an iterative process according to the formula (9) .
Third step. Processors P0, P1, . . . , Pn transmit data to the processor Pi . Processor Pi

calculates the values of initial distribution of temperature in the i -layer according to the formula
(2).

1439

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

5 Conclusion

In the present article The Fourier transform method with dividing points provides the parallel
computing for the solution of the direct and inverse problem of the temperature �eld structure
in semi-in�nite piece-homogeneous bar Bessel and Weber transforms solve the problems of
mathematical physics with spherical symmetry. In the future we will develop the parallel
computing algorithms Bessel and Weber transforms.

References

1. Lebedev N.N., Skalskaya I.P., U�yand Y.S.Worked Problems in Applied Mathematics. New
York: Dover, 1979.

2. Il'in V.A. Convergence of eigenfunction expansions at points of discontinuity of the
coe�cients of a di�erential operator//Mathematical Notes. 1977. V. 22. N. 5. P. 870-882.

3. Yaremko O.E. Matrix integral Fourier transforms for problems with discontinuous
coe�cients and transformation operators//Doklady Mathematics. MAIK Nauka. 2007.
V. 76. N. 3. P.323-325.

4. Lenyuk M.P. Mathematical modeling of mass transfer in symmetric heterogeneous and
nanoporous media with a system of n-interface interactions// Cybernetics and Systems
Analysis. 2007. V. 43. P. 94 - 111.

5. Vasin V.V. Regularization and iterative approximation for linear ill-posed problems in the
space of functions of bounded variation// Tr. Inst. Mat. Mekh. 2002. V. 8. N. 1. P. 189-202.

6. Tikhonov A.N., Arsenin V.Y. Solutions of Ill-Posed Problems. Winston; New York, 1977.

7. Podstrigach Ya.S., Kolyano Yu.M.Obobshchennaya termomehanika. Kiev: Naukova dumka,
1976.

8. Brigham E.O. The Fast Fourier Transform. New York: Prentice-Hall, 2002.

9. Beck J.V., Blackwell B.St., Clair C.R. Inverse Heat Conduction. Ill-Posed Problems. New
York: J. Wiley, 1985.

Accepted for publication 7.06.2010.

1440

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

ÏÀÐÀËËÅËÜÍÛÅ ÂÛ×ÈÑËÅÍÈß ÄËß ÏÐÅÎÁÐÀÇÎÂÀÍÈß ÔÓÐÜÅ Ñ
ÐÀÇÐÛÂÍÛÌÈ ÊÎÝÔÔÈÖÈÅÍÒÀÌÈ

c© Îëåã Ýììàíóèëîâè÷ ßðåìêî
Ïåíçåíñêèé ãîñóäàðñòâåííûé ïåäàãîãè÷åñêèé óíèâåðñèòåò èì. Â.Ã. Áåëèíñêîãî,
Ëåðìîíòîâà 37, Ïåíçà, 440026, Ðîññèÿ, êàíäèäàò ôèçèêî-ìàòåìàòè÷åñêèõ íàóê,
ïðîôåññîð, çàâ. êàôåäðîé ìàòåìàòè÷åñêîãî àíàëèçà, e-mail: yaremki@yandex.ru

c© Íàòàëèÿ Íèêîëàåâíà ßðåìêî
Ïåíçåíñêèé ãîñóäàðñòâåííûé ïåäàãîãè÷åñêèé óíèâåðñèòåò èì. Â.Ã. Áåëèíñêîãî,

Ëåðìîíòîâà 37, Ïåíçà, 440026, Ðîññèÿ, êàíäèäàò ôèçèêî-ìàòåìàòè÷åñêèõ íàóê, äîöåíò
êàôåäðû ìàòåìàòè÷åñêîãî àíàëèçà, e-mail: yaremki@yandex.ru

Êëþ÷åâûå ñëîâà: ïðåîáðàçîâàíèÿ Ôóðüå ñ ðàçðûâíûìè êîýôôèöèåíòàìè; ïðÿìàÿ
è îáðàòíàÿ çàäà÷è Êîøè; óðàâíåíèå òåïëîïðîâîäíîñòè.
Èññëåäîâàí ïàðàëëåëüíûé âû÷èñëèòåëüíûé àëãîðèòì äëÿ ðåøåíèÿ ïðÿìîé è îá-
ðàòíîé çàäà÷è î ñòðóêòóðå òåìïåðàòóðíîãî ïîëÿ â ïîëóáåñêîíå÷íîì êóñî÷íî-
îäíîðîäíîì ñòåðæíå. Ìåòîä ïðåîáðàçîâàíèÿ Ôóðüå ñ òî÷êàìè äåëåíèÿ îáåñïå÷èâà-
åò âîçìîæíîñòü ïàðàëëåëüíûõ âû÷èñëåíèé äëÿ ðåøåíèÿ óêàçàííûõ ïðîáëåì.

1441

