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The method is used for linear di�erential equations with delayed argument. There is
constructed an algorithm, which is symbolic-numerical. The numerical component concerns
a representation of functions, involved into the process by some kind of series.
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1. Introduction

There is a class of physical problems, which is associated with action of some kind of
complementary forces - forces which are involved at various not initial time moments.
Such problems frequently lead to the so called di�erential equations with delayed argu-
ment. Di�erent ways of dealing with such equations exist. See for example [1, 2]. We
consider linear equations with constant coe�cients and right-hand parts of exponential
increase.

Applications of the Laplace transform method are well known. It permits to re-
duce an in�nitesimal problem to an algebraic one that may be solved symbolically or
symbolic-numerically. Moreover, it gives means to estimate an accuracy of calculations.
However there are some facts which prevent using this method in a symbolic way. Some
di�culties, for example, are connected with a form of the solution of the Laplace image
of the input di�erential equations, i.e. the exponential polynomials, which appears in
the solution of algebraic equation. We suggest the usage of series expansion of some
kind for symbolic-numerical solution with a necessary accuracy. It extends the class of
equations to be solved by this method.

We restrict ourselves to the consideration of one equation, but the method works
similarly with systems of equations of such type.

2. A di�erential equation with delayed argument and application of
Laplace transform

We consider all functions, either unknown or standing at the right-hand parts of
equations, on the segment T : 0 ≤ t ≤ T . Split T into parts by rational points
0 < tk < tk+1 < T, k = 0, . . . , N . All functions of the argument t are supposed
to satisfy the conditions for existing of their Laplace transform, i.e. they have an
exponential increase. Consider an equation

x(n)(t) +
n∑
j=1

N∑
k=0

ajkx
(n−j)(t− tk) = f(t), (1)

with initial conditions x(n−j)(0) = x
(n−j)
0 , j = 1..n. As the right-hand members of

equations we consider here a composite function f(t), whose components are repre-
sented as �nite sums of exponents with polynomial coe�cients. f(t) = fk(t), tk <

t < tk+1, k = 1..N, where fk(t) =
∑Sk
sk=1 Psk (t)e

bsk t, k = 1..N, and Psk (t) =∑Msk
m=0 cskmt

m.



The �rst step is to prepare the equation (1) for performance of Laplace transform.
Uing the Heaviside function η(t) we obtain the following form of the equation (1)

x(n)(t) +

n∑
j=1

N∑
k=0

ajkη(t− tk)x(n−j)(t− tk) = f(t),

f(t) must also be written by means of Heaviside function.
It permits to write symbolically the Laplace image of the equation (1):pn +

n∑
j=1

N∑
k=0

ajke
−ptkpn−j

X(p) =

n∑
j=1

pj−1x
(n−j)
0 +

n−1∑
j=1

N∑
k=0

ajkp
j−1x

(n−j)
0 e−ptk + F (p),

where X(p) and F (p) are the Laplace images of x(t) and f(t), correspondingly, and
F (p) is also a sum of exponents with polynomial coe�cients. Denote

Q(p) =

n∑
j=1

pj−1x
(n−j)
0 +

n−1∑
j=1

N∑
k=0

ajkp
j−1x

(n−j)
0 e−ptk + F (p),

D(p) = pn +
n∑
j=1

N∑
k=0

ajke
−ptkpn−j , then X(p) =

Q(p)

D(p)
.

The last step of the algorithm is the Inverse Laplace transform. We must �nd a half-
plane to chose a vertical line for inverse transform and for a series expansion.

Consider X(p) and its denominator D(p). There exists a half-plane, where X(p) is
holomorphic. To �nd it we must �nd a half-plane, where D(p) is non-zero. Let us �nd
σ > 0 such that D(p) 6= 0 for all p : Re p > σ. As D(p) → ∞ while p → ∞ then for
each δ > 0 there exists σ such that D(p) > δ if p : Re p > σ.

We have for su�ciently large |p|

|D(p)| ≥ |p|N (1−
n∑
j=1

N∑
k=0

|ajk||p|(n−j)/N ).

Denote A =
∑n
j=1

∑N
k=0 |ajk|, and take σ = max

{
δ, δ

1−A

}
. If Re p > σ, then |D(p)| >

δ. So we may take the half-plane Re p > σ, X(p) is holomorphic in it.
We must mention, that the line Re p = σ̃, σ̃ ≥ σ, may be taken as line of integration

for numerical calculation of the inverse Laplace transform.
At last we must expand the solution in one special series Writing tk as tk = τk

σk
,

denote σ = LCMk(σk), and tk = τ̃k
σ
. Denote e−

p
σ = z. Then

X(p) =

∑n
j=1 p

j−1x
(n−j)
0 +

∑n−1
j=1

∑N
k=0 ajkp

j−1x
(n−j)
0 zτ̃k + F (p)

pn +
∑n
j=1

∑N
k=0 ajkz

τ̃kpn−j
. (2)

We do not write the exact expression of such kind for F (p), as it is rather bulky,
mention only, that the exponents are the same, because we take the same split points.



Formally we expand (2) in a Taylor series by z at the point z = 0. It corresponds to

p : Re p = +∞. Substituting e−
p
σ instead of z, we obtain the series for X(p) by e−

np
σ ,

which converges in some neighbourhood of ∞:∑
n

Ane
−np
σ , (3)

where An are proper fractions, and can be represented as sums of partial fractions.
For the series (3) the Inverse Laplace transform may be written symbolically. A

problem is to de�ne n and Re p su�cient for designed accuracy of the di�erential
equation.

Let us take the n − th Taylor approximation of X(p) and �nd its inverse Laplace
image. Denote by x̃(t) an approximate solution of (1), which is equal to this image.
The accuracy of such solution we denote by ε, i.e. maxT|x(t)− x̃(t)| < ε.

The remainder term of (3) may be written in the form
∑
k=n

αk
pk
e−

kp
σ . Demand

|p||αn|/(Re p)ne−(nRe p)/σ < ε. Then we obtain it for each t ∈ T.

3. Conclusions

In the conclusion let us mention the advantages of our method:
1. The algebraization of the problem makes possible to apply fast and e�cient

method for solving algebraic linear system with polynomial coe�cients. It is actual
because it permits to solve huge problems.

2. The expansion into the series of exponent with polynomial coe�cients extends
the class of equations which may be solved by means of Laplace transform.
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Ïðåîáðàçîâàíèå Ëàïëàñà ïðè ðåøåíèè äèôôåðåíöèàëüíûõ
óðàâíåíèé ñ çàïàçäûâàþùèìè àðãóìåíòàìè

Í. À. Ìàëàøîíîê

Ëàáîðàòîðèÿ àëãåáðàè÷åñêèõ âû÷èñëåíèé,
Òàìáîâñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò,

óë. Èíòåðíàöèîíàëüíàÿ 33, Òàìáîâ, Ðîññèÿ, 392000

Ïðåäëàãàåòñÿ ñèìâîëüíî-÷èñëåííûé àëãîðèòì ðåøåíèÿ äèôôåðåíöèàëüíûõ óðàâíå-
íèé ñ çàïàçäûâàþùèì àðãóìåíòîì. ×èñëåííàÿ êîìïîíåíòà àëãîðèòìà ñîäåðæèò ïðåä-
ñòàâëåíèå ôóíêöèé íåêîòîðûì ñïåöèàëüíûì ðÿäîì.

Êëþ÷åâûå ñëîâà: ëèíåéíûå äèôôåðåíöèàëüíûå óðàâíåíèÿ, çàïàçäûâàþùèé àðãó-

ìåíò, ÷èñëåííî-ñèìâîëüíûé àëãîðèòì.
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