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1. INTRODUCTION

In this paper, we consider two Euclidean domains—
the ring of integers and the ring of polynomials over a
field—and two following problems: solution of a sys-
tem of linear equations in a domain and that in the field
of quotients of the domain.

Consider a system of linear equations with a square
nonsingular matrix of coefficients. Such a system is
referred to as a 

 

determined system

 

; it has only one
solution in the field of quotients of the domain.

Let all coefficients of the system be integer and the
order of the system be 

 

n

 

. Let the system be solved by an
algorithm of complexity 

 

θ

 

(

 

n

 

3

 

) operations on the coeffi-
cients.

 

1

 

If the standard integer arithmetic is used, the com-
plexity of the multiplication operation is proportional
to the product of logarithms of the multipliers. The
operands on the 

 

k

 

th step, 

 

k

 

 = 1, …, 

 

n

 

 – 1, are minors of
the 

 

k

 

th order; hence, their logarithms grow as 

 

O

 

~

 

(

 

k

 

).
The total complexity of such an algorithm grows as

 

O

 

~

 

(

 

n

 

5

 

).
The modular approach based on the Chinese

remainder theorem makes it possible to avoid the
growth of the coefficients. The computations are per-
formed in the residue ring modulo prime number, and
the coefficients do not grow. In this case, the recon-
struction of a solution requires 

 

O

 

~

 

(

 

n

 

) modules; there-

 

1

 

If 

 

f

 

 and 

 

g

 

 are functions with the range in 

 

R

 

, we use the following
notation: 

 

g

 

 = 

 

O

 

(

 

f

 

) if 

 

|

 

g

 

/

 

f

 

|

 

 is bounded at +

 

∞

 

, 

 

g

 

 = 

 

O

 

~

 

(

 

f

 

) if 

 

g

 

 =

 

O

 

(

 

f

 

) for a certain constant 

 

c

 

, 

 

g

 

 = 

 

θ

 

(

 

f

 

) if 

 

|

 

g

 

/

 

f

 

|

 

 and 

 

|

 

f

 

/

 

g

 

|

 

 are
bounded at +

 

∞

 

, and 

 

g

 

 = 

 

o

 

(

 

f

 

) if lim(

 

g

 

/

 

f

 

) = 0.
flog

c

 

fore, it is required to solve the system 

 

O

 

~

 

(

 

n

 

) times.
Hence, the complexity of such an algorithm grows as

 

O

 

~

 

(

 

n

 

4

 

).

The use of the 

 

p

 

-adic method with linear lifting
makes it possible to avoid not only the growth of the
coefficients but also the growth of the number of mod-
ules. First, the inverse matrix and solution vector mod-
ulo 

 

p

 

 are sought, which requires 

 

θ

 

(

 

n

 

3

 

) operations mod-
ulo 

 

p

 

. Next, by multiplying the inverse matrix by the
reconstructed column of the free terms, the solution

vector is lifted up to , which requires 

 

O

 

~

 

(

 

n

 

) steps
of lifting. On each step, the multiplication of a matrix
by a vector requires 

 

θ

 

(

 

n

 

2

 

) operations modulo 

 

p

 

. Then, 

 

n

 

rational numbers that constitute the solution vector are
reconstructed; each of them requires 

 

θ

 

(

 

n

 

2

 

) operations.
Thus, each stage requires 

 

O

 

~

 

(

 

n

 

3

 

) operations, and the
total complexity of the algorithm is 

 

O

 

~

 

(

 

n

 

3

 

).

Let now a determined system be solved by an algo-
rithm with complexity 

 

O

 

~

 

(

 

n

 

β

 

) (

 

β

 

 

 

≈

 

 2.376) operations on
the coefficients, and let numbers be multiplied by
means of the FFT algorithm [2]. The multiplication of

 

n

 

-bit numbers requires 

 

O

 

~

 

(

 

n

 

) bitwise operations. The
calculation of the greatest common divisor and recon-
struction of a number by mutually prime remainders
requires the same number of operations. It should be
noted that the last estimates can be viewed only as the-
oretical ones unlike those given above, which can easily
be implemented in practice.

The first and second algorithms, i.e., the algorithms
with standard and modular arithmetic, require in this
case 

 

O

 

~

 

(

 

n

 

β

 

 + 1

 

) bitwise operations, whereas the 

 

p

 

-adic

pO
~

n( )
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Abstract

 

—A new algorithm for solving systems of linear equations 

 

Ax

 

 = 

 

b

 

 in an Euclidean domain is sug-

gested. In the case of the ring 

 

Z

 

 of integers, the complexity of this algorithm is 

 

O

 

~

 

(

 

n

 

3

 

m

 

), where 

 

A

 

 

 

∈

 

Z

 

n

 

 

 

×

 

 

 

m

 

 (

 

m

 

 > 

 

n

 

) is a matrix of rank 

 

n

 

 and 

 

||

 

A

 

|| 

 

= , if standard algorithms for the multiplication of integers

and matrices are used. Under the same conditions, the best algorithm of this kind among those published earlier,

which was suggested by Labahn and Storjohann in [1], has complexity 

 

O

 

~

 

(

 

n4m ). True, when using fast
algorithms for the multiplication of numbers and matrices, the theoretical complexity estimate for the latter

algorithm is O~(nβm ), which is better than the similar estimate O~(n3m ) for the new algorithm.

||A||log
2

Ai j,
i j,

max

||A||log
2

||A||log
2 ||A||log
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algorithm requires, as before, O~(n3) bitwise opera-
tions.

Hence, the asymptotically best method for deter-
mined systems is the p-adic method from both theoret-
ical and practical standpoints. This method was devel-
oped by Dixon in 1982 [3]. Note that the best algo-
rithms for small-dimension systems are those with
standard arithmetic; for systems of intermediate dimen-
sion, modular algorithms; and, only for large-scale sys-
tems, the p-adic method is the best one. This can be
explained, first of all, by that the reconstruction of a
quotient is a more complicated procedure than that of
the numerator and denominator separately.

In this work, we consider algorithms for solving an
undetermined system of linear equations that find a
general solution of such a system.

The traditional method for solving linear systems of
the Diophantine equations is based on the calculation
of the Smith form for the matrix of the coefficients of
the system [4–7].

Another approach, which is currently being devel-
oped, consists in representing the general solution of a
system as a sum of a particular solution and the general
solution of the corresponding homogeneous system.
The best results in the framework of this approach are
obtained in [1, 8, 9]. Let xA = 0 be a homogeneous
Diophantine system of linear equations, the matrix A ∈
Zm × n have rank n, m > n, x ∈  Z1 × m, U be a unimodular
matrix over Z, such that UA = H and H is an upper tri-
angular matrix. Then, it is not difficult to see that the
last m – n rows of U constitute a basis in the set of all
solutions of the homogeneous system xA = 0.

An algorithm of this kind is discussed in [8]. To find
the general solution of a homogeneous Diophantine
system xA = 0, an algorithm for the calculation of the
upper triangular form for the matrix A is suggested,
which has complexity O~(n2mM(n )). In the work
[1], this algorithm was improved, and the complexity of
the improved algorithm, which calculates the Hermite
upper triangular form, is O~(nβ – 1mM(n )). In [9],
a probabilistic method for finding a particular solution
of a Diophantine system of linear equations is sug-

gested; its expected complexity is O~(n3 ) when
using standard multiplication algorithms. Hence, the
major part of the total complexity of this algorithm for
solving Diophantine systems of linear equations is that
associated with the calculation of the general solution
of the homogeneous system. Here and in what follows,
||A|| = , and β is the exponent of power in

the complexity estimate of the matrix multiplication. It
is assumed that the multiplication of two matrices of
order n requires θ(nβ) operations and θ(M(t)) is the
complexity of the multiplication of two t-bit numbers.
For standard algorithms, β = 3, and M(t) = t2. The best
currently known theoretical results give β ≈ 2.376 and
M(t) = t  [2, 10].

||A||log

||A||log

||A||log
3

Ai j,( )
i j,

max

t tlogloglog

The best theoretical results cannot be realized yet
because of limited capabilities of modern computers. In
connection with this, it is commonly accepted to distin-
guish between the best theoretical and best practical
results. For standard multiplication algorithms, the
complexity estimate for the algorithm [1] for solving
Diophantine systems of linear equations is

O~(n4m ), whereas, for the best multiplication
algorithms, it is equal to O~(nβm ).

We consider a different approach to solving undeter-
mined systems of linear equations; namely, we con-
sider the deterministic and probabilistic p-adic meth-
ods, which were first suggested in [11] and are further
developed in this work.

The basic idea of the approach is to find a basis set
of points in the plane containing all solutions of the sys-
tem in the space Qn by applying the p-adic lifting.
Then, in order to get a solution in Z, integer points in
this plane are calculated. Note that, in the deterministic
method, the problem is reduced to solving a system in
the quotient ring. In the probabilistic method, one inte-
ger solution is calculated if the ideal generated by the
denominators of all rational solutions is unit, and, then,
all other basis integer solutions are constructed.

The complexity estimate for the deterministic algo-

rithm (see Proposition 3) is O~(n3m ) when
using standard algorithms for matrix and number mul-
tiplication and O~(n3m ) for theoretically best
algorithms for matrix and number multiplication,
where A ∈  Zn × m is a matrix of rank n. The comparison
of these estimates with those for the algorithm from [1]
shows that, for the fast multiplication algorithms, the
complexity of the new algorithm is greater by n3 – β

times, whereas, for the standard multiplication algo-
rithms, it is less by n times. This allows us to consider
the algorithm from [1] as theoretically best and the new
algorithm as practically best.

Another advantage of the new algorithm is that the
coefficients in any solution vector being calculated do

not exceed the Hadamard bound v  = ( ||A||)n for the
greatest minor of order n, whereas, in the algorithm
from [1], the bound for the absolute value of the coeffi-
cients is nv 2 (in the algorithm from [8], it is even
greater).

The new results obtained in this work can be sum-
marized as follows.

• In the framework of the general method discussed
in [11], the deterministic and probabilistic p-adic algo-
rithms are suggested (Figs. 2–5).

• More exact complexity estimates for these algo-
rithms are obtained for various system dimensions and
various computational models.

• The complexity estimate in the case of using stan-
dard multiplication algorithms is reduced by n times as
compared to the estimate obtained in [11]. This was

||A||log
2

||A||log

||A||log
2

||A||log

n
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achieved through the use of the modular algorithm for
computing matrix product in the quotient ring.

The paper is organized as follows. In Section 2, two
computational models are presented, which are further
used for getting complexity estimates for the algo-
rithms. In Section 3, the p-adic algorithms (Figs. 2 and
3) for solving systems of linear equations in the field of
quotients are discussed. The probabilistic method for
solving systems in commutative domains (Fig. 4) is dis-
cussed in Section 4. In Section 5, the deterministic
method for solving systems in Euclidean domains
(Fig. 5) is discussed, and complexity estimates are pre-
sented.

2. COMPUTATIONAL MODEL

Let F[x] be a ring of polynomials over a field F. The
norm of an element p in F[x]\{0}, denoted as Nr(p), is
the degree of the polynomial, and the norm of an ele-
ment in the ring of integers Z\{0} is the logarithm of
the absolute value of this element; i.e.,

(1)

The logarithmic base is convenient to take equal to the
length of the machine word w, which is currently either
232 or 264. If every coefficient of a polynomial is stored
in one machine word, then the number of the words
required for storing one element p is equal to Nr(p)  + 1
in both cases. It is evident that 0 ≤ Nr(p) and Nr(pq) =
Nr(p) + Nr(q). We define the norm of a nonzero matrix
A = (ai, j) as the greatest norm of its elements, ||A|| =

(ai, j), and introduce the function ρA as

(2)

Here, n is the smaller dimension of A. The upper bound
for the norm of the determinant of a matrix A of order n
can be written in terms of ρA, such that

(3)

For the ring F[x], this inequality is evident; for the case
of the ring R = Z, it can be proved by means of Had-
amard’s inequality. Note also that the determinant of
any submatrix A0 of order k of matrix A is bounded from
above: Nr(detA0) ≤ kρA . We will estimate algorithms by
using two following computational models.

The best modern model (B-model). The currently
best algorithm for the multiplicative operations on inte-
ger N-bit numbers [12] has complexity

(4)

which is given in terms of multiplicative operations on
machine words, and the complexity of the best algo-

Nr p( )
deg p for F x[ ] ,

p for Z.wlog



=

Nr
i j,

max

ρA

A for F x[ ] ,

A
1
2
--- n for Z.wlog+







=

Nr detA( ) nρA.≤

ΛB O N N Nlogloglog( ),=

rithm [13] for calculating the greatest common divisor
(GCD) for N-bit numbers is

(5)

The same estimates take place for the number of
multiplicative operations in the field F for polynomials
of degree N from F[x] (see [2, 10] for more detail).

To get complexity estimates for intermediate algo-
rithms, including the classical one, we will use the fol-
lowing model.

The common computational model (C-model).
We assume that there exist algorithms for the multipli-
cation and division of numbers and polynomials with
the norm less than that of an element a that have com-
plexity

(6)

which is expressed in terms of multiplicative operations
on machine words for Z and in terms of multiplicative
operations in the field F for F[x]. Here, η and δ are con-
stants, and 1 < δ ≤ 2. We assume that there exists an
Euclidean algorithm for finding the greatest common
divisor of two elements a and b (Nr(b) ≤ Nr(a)) with the
complexity

(7)

where, for Z, w is equal to the length of the machine
word and, for F[x], w = 2.

For η = 1 and δ = 2, (6) is the estimate for the stan-
dard multiplication algorithm. For η = 1 and δ = log23,
it coincides with the estimate for the Karatsuba multi-
plication algorithm when a is a power of number 2.

For F[x], estimate (7) is evident; for Z, it follows
from the well-known estimate [14]: the maximum num-
ber of divisions in the Euclidean algorithm for numbers
a and b (|b| ≤ |a|) does not exceed

(8)

It is known also [15] that, for a fixed b and an arbitrary
a, the maximum number of divisions in the Euclidean
algorithm does not exceed

Numerical experiments show that the average number
of divisions in the Euclidean algorithm for integers is

log2b, and the quotients usually occupy one

machine word. Therefore, to find the quotient, one divi-
sion operation is, as a rule, sufficient. The finding of a
residual requires as many operations as there are words
in the number designation. This is discussed in a more
detail in [16, 17].

Complexity estimates for the C-model will be
denoted by the subscript C. They are given in terms of
the number of multiplicative operations on machine
words for the ring Z and in terms of the number of oper-

ΦB O N Nlogloglog
2( ).=

ΛC ηNrδ a( ) o Nrδ a( )( ),+≤

ΦC Nr2 a( ) w2log O Nr a( )( ),+≤

2 a2log 1.+

3 5+( )2log 1–( ) 1–
b ≈0.72 b2log( ).2.log

2

1 5+
----------------
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ations in the field F for the ring F[x]. Estimates
obtained for the B-model will be denoted by the sub-
script B.

3. SOLUTION OF SYSTEMS BY THE p-ADIC 
METHOD IN THE FIELD OF QUOTIENTS

The general scheme of solving a determined system
by the p-adic method has been suggested by Dixon in
1982 [3] and is as follows.

An appropriate prime element p of the ring R is
selected. It is convenient to take an element of size
equal to the length of one machine word, such that
arithmetic operations modulo p could be performed
without going beyond the limits of the maximum inte-
ger determined by the computational system. The ele-
ment p must not be a divisor of the determinant of the
matrix of coefficients. A random selection of p may be
inappropriate. Since the numbers multiple of a prime p
occur in the ring Z with the probability 1/p, the random
selection of p in Z may turn out inappropriate with the
probability 1/p. If the solution check shows that the
solution obtained is not correct, the next prime element
p is selected. A solution of the system in the ring of res-
idues modulo p can be sought by any fast method for
solving systems in a field with the complexity of the
matrix multiplication, for example, by the recursive
method suggested in [18].

It follows from Hadamard’s inequality that the
determinant of a matrix A of order n satisfies the ine-

quality |detA| ≤ ( ||A||)n. This makes it possible to
find upper bounds for the numerator and denominator
of the solution, which, in turn, allows us to find the esti-
mate for the lifting boundary pk. The lifting boundary
must be not less than the doubled product of the great-
est numerator and the greatest denominator of the solu-
tion vector in order that any fraction (with regard to its

sign) could be reconstructed (pk ≥ 2( ||A||)2n). Then,

n

n

the solution is lifted modulo p up to pk, and the rational
solution is reconstructed. A detailed discussion of the
p-adic methods can be found in [16].

The algorithms discussed in this paper are based on
Dixon’s algorithm for solving a determined system by
means of linear p-adic lifting, Wang’s algorithm of a
rational fraction reconstruction [19], and the general
method of reduction of solution of an arbitrary system
to solving determined systems, as well as on Theorems
1 and 2.

3.1. Fraction Reconstruction

The reconstruction of a rational number a/b by a
given module µ (b and µ are mutually prime) and a
remainder u is the calculation of integers a and b such

that their absolute values are not greater than  and
a ≡ bumodµ.

An algorithm for the fraction reconstruction has
been suggested by Wang [19]; later, it was improved by
Collins and Encarnacion [20]. In Fig. 1, Wang’s algo-
rithm [19] is presented.

For numbers µ and u, Wang’s algorithm follows the
Euclidean algorithm and calculates a sequence of
remainders (a1, a2). Simultaneously, an additional
sequence (v 1, v 2) beginning with the pair (1, 0) that cal-
culates one of two coefficients in the extended Euclid-
ean algorithm is constructed. The computation is termi-
nated when the magnitude of the next remainder is less

than . In this case, a is the last remainder
obtained, and b is the last term of the additional
sequence. The complexity of Wang’s algorithm is the
same as that of the Euclidean algorithm.

3.2. The p-Adic Method for Solving Systems 
in the Field of Quotients

Let R be an Euclidean domain. Consider a system of
linear equations over R,

(9)

where the matrix of coefficients A ∈  Rn × m has rank r.
Let S and T be permutation matrices. We represent
matrices SAT and Sc in the block form as

(10)

where A0 is an r × r submatrix and detA0 ≠ 0.
Consider first the homogeneous system (c = 0).
3.2.1. The p-adic method for solving homoge-

neous systems in the field of quotients. 
Theorem 1. Let system (9) be homogeneous and

aj ∈  Rr be columns of the matrix A1; i.e., A1 = (a1, a2, …,
am – r). Then, the systems A0xj = –aj , j = 1, …, m – r, are

µ/2

µ/2

Ax c,=

SAT
A0 A1

A2 A3 
 
 

, Sc
c0

c1 
 
 

, c0 Rr,∈= =

Algorithm RationalReconstruction 
Input: Module µ and remainder u ∈  Zµ.

Output: The pair of integers (a, b), b > 0, such that

a ≡ bu(modµ), |a|, |b| < .
(a1, a2) := (µ, u); (v1, v2) := (0, 1);
while TRUE do

if v2 ≥  then return NIL;

if a2 <  then return (sign(v2)a2, |v2|);
q :=  a1/a2 ; (a1, v1) := (a1, v1) – q(a2, v2);

PERMUTATION((a1, v1) ↔ (a2, v2));
end while

µ 2⁄

µ 2⁄

µ 2⁄

Fig. 1. Wang’s algorithm for reconstruction of rational
numbers.
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determined, and their solutions xj ∈  Kr form a basis set
for solutions of system (9),

where ej are columns of the identity matrix Im – r = (e1,
e2, …, em – r).

Proof. Since detA0 ≠ 0, all systems A0xj = –aj are
determined. Introduce the notation y = T–1x. By the
assumption of the theorem, (A0, A1)y = 0. If we seek the

solution in the form yj = , we arrive at the system

A0xj = –aj . The linear independence of the vectors yj fol-

T
x j

e j 
 
 

, j 1 … m r–, ,=
 
 
 

,

x j

e j 
 
 

lows from linear independence of the vectors ej , j = 1,
…, m – r.

The corresponding algorithm is shown in Fig. 2.
In this algorithm, estimates for the boundary of the

p-adic lifting [A] are calculated separately for each
system, which requires estimates for the numerator and
denominator of the solution of the system. For Z, the
latter are calculated by Hadamard’s inequality.

This algorithm uses the following functions:

D = , the estimate for the denominator
in F[x];

D =  + (ak), the estimate for the

denominator in Z;

L j
H

Nr ak( )
k 1=
n∑

n
2
--- nwlog Nr

k 1=
n∑

Algorithm RationalBasisH[A]
Input: A ∈  Rn × m

Output: Solutions of system Ax = 0.
p := FirstPrime;
repeat

Initialization of the algorithm:

{ , S, T, r} := DiagonalFormH[modp A];
if m = r then return{∅ };

 := SAT; ( , a0) := A0; (a1, …, am – r) := A1;

j := 1; Test := TRUE;
repeat 

p-adic lifting:
l := 1; x := 0; c* := –aj;
repeat

 := modp c*; c* := (c* – A0 )/p; x := x + l ; l := lp;

until Nr(l) ≥ [A];

 := RationalReconstruction[x, , D];

Solution check: 
Comment: (e1, …, em – r) = Im – r

xj := T ;

if Axj ≠ 0 then Test := FALSE;
j := j + 1;

until j > m – r or Test = FALSE;
p := NextPrime[p];

until Test = TRUE;
return {x1, …, xm – r}.

Ã0
1–

A0 A1

A2 A3 
 
 

A0'

x̃ Ã0
1–

x̃ x̃

L j
H

x j

ξ j 
 
 

N j
H

x j

ξ je j 
 
 

Fig. 2. The algorithm for computing rational basis of solutions of a homogeneous system of linear equations by the p-adic method.
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 = D + Nr(aj) – (ak), the estimate for

the numerator in F[x];

 =  + D + Nr(aj) – (ak), the

estimate for the numerator in Z;

[A] =  + D, the estimate for the boundary of
the p-adic lifting in F[x];

[A] =  + D + logw2, the estimate for the
boundary of the p-adic lifting in Z (the last addend is
used to take into account the sign);

NextPrime[p], the generator of prime elements of
the ring R, which returns the next prime element after p;

FirstPrime returns the first prime element;
 = R/pR denotes the quotient ring;

DiagonalFormH[modp A], the diagonalization algo-

rithm in the ring  for the homogeneous systems,

which calculates { , S, T, r};

RationalReconstruction[ , N, D], reconstruction of
the solution vector in the quotient field of the ring R by
the solution  in the ring R/pkR when the numerator
and denominator are bounded by the numbers N and D
(Wang’s algorithm or the improved algorithm from
[20]).

3.2.2. The p-adic method for solving nonhomoge-
neous systems in the quotient field. Now, we turn to
the case of a nonhomogeneous system (c ≠ 0).

Theorem 2. Let (9) be a nonhomogeneous system of
linear equations and S, T, and P be permutation matri-
ces such that S and T satisfy (10). Introduce the nota-
tion

Let matrix P be selected from the condition that β is
nonzero element of the free-term column. Let J denote
the set of numbers of columns of matrix B with zero ele-
ments in the last row, J = {j|βj = 0, j = 1, …, m – r}.
Introduce the notation

N j
H Nr

k 1 … n, ,=
min

N j
H n

2
--- nwlog Nr

k 1 … n, ,=
min

L j
H N j

H

L j
H N j

H

R̃

R̃

Ã0
1–

x̃

x̃

B b,( ) PA0
1– A1 c0,( ),=

B b1 … bm r–

β1 … βm r– 
 
 

,=

b b

β 
 
 

β β j R.∈, ,=

Q P 0

0 Im r– 
 
 

,=

U Im r– 1+ E1 j 1+, ,
j J∈
∑+=

Then, the systems

(11)

are determined; their solutions are the vectors

(12)

and the vectors

(13)

where  are columns of the identity matrix Im – r + 1 =

( , , …, ), form a basis set of solutions of the
system Ax = c.

Proof. Introduce the notation y = V–1T–1x. Then, by
the assumption, P(A0, A1)Vy = Pc0 and P(A0, A1)V =

( , a0, a1, …, am – r). If we seek the solution in the

form y = , we arrive at systems (11).

Let us show that systems (11) are determined. To

this end, we multiply them from the left by P P.
Since P = P–1, we have

Since b = P c0 and P P( , a0) = Ir , the first
system in (11) takes the form Irx0 = b. Introduce the

notation Ir = ( , e), e ∈  Rr. Then, P P  = , and

P Pa0 = e.

By the assumption,

W Ir 1– 0

0 U 
 
 

,=

V QW , A0 a0 a1 … am r–, , , ,( ) P A0 A1,( )V ,= =

A0 Rr r 1–( )× , a j Rr.∈∈

A0 a j,( )x j Pc0, j 0 1 … m r,–, , ,= =

x j
x j

ξ j 
 
 

Ir 1– b j–

0 1 
 
 

PA0
1– c0, for j J ;∈

Ir 1– b jβ j
1––

0 β j 
 
 
 

PA0
1– c0, for j J ;∉











= =

TV
x j

ξ je j 
 
 

, j 0 1 … m r,–, , ,=

e j

e0 e1 em r–

A0

x j

ξ je j 
 
 

A0
1–

PA0
1– P A0 a j,( )x j PA0

1– c0, j 0 1 … m r.–, , ,= =
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Algorithm RationalBasis[A, c]
Input: A ∈  Rn × m, c ∈  Rn

Output: Solutions of system Ax = c or NIL 
p := FirstPrime; i := 1;
repeat

Initialization of the algorithm:

{ , , , S, T, P, r, rc} := DiagonalForm[modp(A, c)];
if r < rc then return NIL;

Comments:  = ( , , …, ), Im – r + 1 = ( , , …, ),

Comments:  = , Q = .

 := SAT;  := Sc;

 := Pc0; ( , a0) := PA0P; (a1, …, am – r) := PA1;
J := ∅ ;
for j := 1 to m – r do if βj = 0 then J := J ∪  {j};
j := 0; Test = TRUE;
repeat

if j = 0 then A0 := ( , a0);  := P
else if j ∈ J

then Aj := ( , aj + a0);  := 

else Aj := ( , aj);  := 

p-adic lifting:
l := 1; x := 0; c* := ;
repeat

 := modp ;

c* := (c* – Aj )/p;
x := x + l ; l := lp;

until Nr(l) ≥ Lj[A, c]

 := RationalReconstruction[x, Nj, Dj];

Solution check:

if j = 0 then x0 := 

else if j ∈ J

then xj :=  else xj := ;

if Axj ≠ c then Test:=FALSE;
j := j + 1;

until j > m – r or Test = FALSE
i := i + 1; p:= NextPrime[p];

until Test = TRUE or i = NumberOfPrimes
if Test = FALSE then return NIL else return {x0, x1, …, xm – r}.
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  Ã0

1–

A0 Ã j
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Fig. 3. The algorithm for computing rational basis of solutions of a nonhomogeneous system of linear equations by the p-adic
method.
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Hence, it follows that P P(a0, …, am – r) =

P P(a0, PA1)U = (e, B)U. Denote by dj, j = 1, …, m – r,
the columns of the matrix (e, B)U. Since U = Im – r + 1 +

 and J is the set of numbers of columns in
the matrix B with zero elements in the last row, the mul-
tiplication by the matrix U implies that the column e is
added to each column of the matrix (e, B) with the num-
ber j ∈  J. Therefore, the last row of the matrix (e, B)U
does not contain zero elements:

Hence, after the multiplication by P P, system (11)
takes the form

(14)

with det( , dj) ≠ 0. Since the last element of the vector

b is nonzero, solutions xj =  of the system satisfy

the condition ξj ≠ 0. Therefore, the vectors ξj , j =
1, …, m – r, and, hence, vectors (13) are linearly inde-
pendent. Multiplying them by the inverse of the matrix
( , dj), we get solutions of the system in form (12).

Since V = QW = , calculating

the product Vxj , we get the basis set of solutions in the
form

where ej are columns of the identity matrix Im – r =
(e1, …, em – r).

The corresponding algorithm is presented in Fig. 3.
In this algorithm, estimates for the boundary of the

p-adic lifting Lj[A, c] are calculated separately for each
system. For the ring Z, they are obtained from Had-
amard’s inequality. In doing so, it is taken into account
that the denominator is the minor of the matrix of coef-
ficients, and the numerator is the minor of the aug-
mented matrix. This allows us to get a finer estimate,
which may be important when the free terms are small.
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,

In addition, it is taken into account that, when going
from system j to system j + 1, only the last column
(denoted as ) of the matrix A is changed.

The algorithm shown in Fig. 3 uses additionally the
following functions:

Dj = Nr( ) + (ak), the estimate for the
denominator in F[x];

Dj =  + Nr( ) + (ak), the estimate

for the denominator in Z;

Nj = Dj + Nr(c) – , the estimate

for the numerator in F[x];

Nj =  + Dj + Nr(c) – , the

estimate for the numerator in Z;

Lj[A, c] = Nj + Dj , the estimate for the boundary of
the p-adic lifting in F[x];

Lj[A, c] = Nj + Dj + logw2, the estimate for the
boundary of the p-adic lifting in Z (the last addend is
used to take into account the sign);

MinPrime, the prime element with the least norm;
NumberOfPrimes = max(Dj), the number of prime

elements in F[x];

NumberOfPrimes =  /|MinPrime|, the
number of prime elements in Z;

DiagonalForm[modp(A, c)], the diagonalization

algorithm in the ring  for nonhomogeneous systems,

which calculates { , , , S, T, P, r, rc}; here, the

tilde denotes matrices over the quotient ring , and r
and rc are ranks of the matrices modpA and modp(A, c),
respectively.

3.3. Complexity Estimate for the p-Adic Method
for Solving Systems in the Quotient Field

We consider a system Bx = c with n-by-m matrix of
coefficients A = (B, c) of rank n. The module p in the
ring Z is selected from the condition that it is the largest
number that can be stored in one machine word; in the
ring F[x], the module p is taken to be a polynomial of
the first degree.

The complexity of multiplication of matrices of
order n is denoted as γnβ + o(nβ), where γ and β are
some constants, 3 ≥ β > 2.376. The constant γ may be
viewed as a function of β. For example, γ(3) = 1 and
γ(log27) = 1, when n is a power of 2.

The number of multiplicative operations on ele-
ments required to reduce an n-by-m matrix to the
diagonal form by the recursive method is denoted as

â j

â j Nr
k 1=
n 1–∑

n
2
--- nwlog â j Nr

k 1=
n 1–∑

Nr ak( )
k 1 … n 1– j, , ,=

min

n
2
--- nwlog Nr ak( )

k 1 … n 1– j, , ,=
min

w
max D j( )

R̃

Ã0
1–

B̃ b̃

R̃
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γβmnβ − 1 + o(mnβ – 1). The estimates for the function γβ

can be found in [18], e.g., γ3 = 1/3 and  = 7/15.

Proposition 1. Solution in the quotient field. The
complexity of the solution of a system of linear equa-
tions with an n-by-m matrix of coefficients A in the quo-
tient fields Z and F[x] by the p-adic method is esti-
mated as follows:

(15)

(16)

Proof. Consider the common computational model.
Stage 1. The matrix (A, c) is reduced to the diagonal

form modulo p by the recursive method. The complex-
ity of this operation is

 

Stage 2. The complexity of the computation of m – n

matrices  modulo p is

Stage 3. The lifting up to pk, which consists of k =
2ρAn lifting steps. The computation of the product of a

matrix and the vector  = modp c* requires n2 oper-
ations, and the multiplication of the matrix Aj by the
vector , n2||A|| operations. Here, for simplicity, the
complexity of the multiplication algorithm (6) is esti-
mated for δ = 2 and η = 1. Thus, we have

Stage 4. The complexity of reconstruction of n(m – n)

rational fractions by their remainders modulo ,
with regard to estimate (7), is

The total complexity of the algorithm is the sum of
complexities of all stages, C1 + C2 + C3 + C4. Hence, we
obtain

The desired estimate for the C-model follows from this
inequality. The estimate for the B-model is obtained
similarly with the use of (4) and (5).

These are estimates for both the ring of integers and
for polynomials over a field. The difference is in the
values of ρA and w. It should be noted that the solution
obtained needs to be checked by substitution. The solu-

γ 72log

CCp
γβmnβ 1– 4n3 m n–( )ρA

2 w2log 1+( )+≤

+ O n2 m n–( )ρA( ) o mnβ 1–( ),+

CBp
O mnβ 1– ρA

2 n3 m n–( )+(=

+ ρAn2 m n–( ) ρAn ρAnlogloglog
2 ).

C1 γβmnβ 1– o mnβ 1–( ).+=

A j
1–

C2 n2 m n–( ).=

x̃ Ã j
1–

x̃

C3 2ρAn3 A 1+( ) m n–( ).=

p
2ρAn

C4 n m n–( ) 2ρAn( )2 w2log O n2 m n–( )ρA( ).+≤

CCp
γβmnβ 1– 2n3 m n–( )ρA 2ρA w2log A 1+ +( )+≤

+ o mnβ 1–( ) O n2 m n–( )ρA( ).+

tion may occur incorrect with the probability 1/p; i.e.,
the actual complexity may occur greater than Cp by k
times with the probability 1/pk .

4. PROBABILISTIC METHOD FOR SOLVING 
SYSTEMS IN COMMUTATIVE DOMAINS

4.1. Commutative Domains with Identity

Let R be a commutative domain with identity, for
which there is an algorithm for computing a basis of a
finitely generated ideal, e.g., an algorithm of the com-
putation of the Gröbner basis. For x = (x1, x2, …, xs) and
y = (y1, y2, …, ys), we use the notation 〈x, y〉  =

yi .

Let Ax = c be a system of linear equations over R,
and let

(17)

be a rational basis of the set } of its solution. It is not
difficult to show that the set } can be written as

(18)

Consider the probabilistic algorithm for finding a
basis consisting of integer solutions of this system, i.e.,
solutions belonging to Rm.

Let an ideal generated by all denominators χ1, χ2, …,
χh of the rational basis (17) be a unit ideal, and let

(q1, q2, …, qh) be numbers such that χi = 1.
Then,

is an integer solution of system Ax = c. If, in this case,
qk ≠ 0, then

are linearly independent integer solutions that form a
basis set of solutions of the system Ax = c.

The algorithm shown in Fig. 4 uses the following
functions.

The function RationalBasis[A, c] computes a basis

set of rational solutions {x1 , x2 , …, xh } for
system Ax = c and the number h of vectors in it.

The function GI[(χ1, χ2, …, χh)] computes a gener-
ator of the ideal generated by the numbers χ1, χ2, …, χh.
If this ideal is the principal ideal (gcd) generated by an
invertible element, then multipliers q1, q2, …, qh are

also calculated such that 1 = χi , and the value

xii 1=
s∑

xi χ i
1– xi, χ i R\0∈ , x Rm,∈=

i 1 2 … h, , ,=

} x̂ q,〈 〉
χ q,〈 〉

-------------- q Rh∈ χ q,〈 〉 0≠,
 
 
 

.=

qii 1=
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z qi xi

i 1=

h

∑=

z xi z χ i 1–( )– i 1 2 3 … k 1– k 1+ … h, , , , , , ,=, ,{ }
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h∑
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gcd = 1 is returned. If this ideal is not principal, then the
value gcd = 0 is returned.

If this algorithm returns NIL, then the next iteration
is to be executed.

For the next iteration, new permutation matrices S
and T are randomly selected, and a new rational basis is
constructed. The algorithm GI is to be applied to the
denominators of all rational solutions obtained earlier.

4.2. Solution in Euclidean Domains 
by the p-Adic Probabilistic Method

If the domain is Euclidean, the algorithm GI is an
extended Euclidean algorithm.

The idea to apply the probabilistic algorithm based
on (18) for finding solutions of a Diophantine system of
linear equations was suggested in [21] and applied to
solving sparse systems; then, it was used in the work
[9] for finding one solution of dense systems of
Diophantine equations. Note that, for each new solu-
tion, a new inverse matrix was constructed.

In this paper, we apply the probabilistic method for
finding all basis solutions, with the number of matrix
inversions being reduced; namely, the finding of m – n
basis solutions requires one matrix inversion.

The estimate of the expected number of random
rational solutions required for finding one integer solu-
tion in the ring of integers is O(ρA) [9]. One iteration
results in m – n rational solutions; therefore, the
expected number of iterations in the ring of integers is
O(ρA/(m – n)). These estimates are related to matrices
of coefficients of general form. In some cases, matrices
of coefficients are inconvenient for the probabilistic
method, which fails to find a solution for such systems.
This is the case, for example, for systems with almost
diagonal matrices: the denominators of rational solu-
tions have common multipliers (diagonal elements).

The complexity of computing a basis set of solu-
tions in the ring is determined by the number of opera-
tions in the algorithm for solving systems in the quo-
tient field and by that in the algorithm for computing a
basis of a finitely generated ideal.

The asymptotic complexity of the former is O(mnβ – 1),
and that of the latter is O(m(m – n) + CG) operations in
the ring R. Here, CG is the number of operations
required for expanding the identity into m – n genera-
tors of the unit ideal in the ring R. To expand the iden-
tity, one can take advantage of the algorithm for com-
putation of Gröbner bases (see [16, 22–24]).

For the case of an Euclidean domain R, the com-
plexity of computation of a rational basis is determined
by (15) and (16). As to the complexity of finding the
greatest common divisor for m – n denominators whose
norms do not exceed nρA , it is, at least, n times less than
the complexity of computation of a rational basis.
Hence, it follows that the complexity of one iteration is
determined by (15) and (16).

5. SOLUTION IN EUCLIDEAN DOMAINS
BY THE p-ADIC DETERMINISTIC METHOD

Let a system Bx = c satisfy the following conditions:
A = (B, c) ∈  Rn × m, c ∈  Rn, n < m, rankA = n, and let k =
m – n be the number of linearly independent solutions.
Let A = (A0, A1), where A0 is a square matrix, detA0 ≠
0, and the last row of the matrix (A1, c) does not
contain zeros. The general case can be reduced to this
one, like in Theorem 2.

Denote by ej the columns of the identity matrix Ik =
(e1, …, ek) of order k. If the solution of system Ax = c is

sought in the form , where xj ∈  Kn – 1 and ξj ∈

K\{0}, j = 1, …, k, we arrive at a determined system of
order n. Each determined system is solved by the p-adic
method. As a result, we get a basis set of solutions in the
form

Introduce the notation u = (δ1, …, δk), u ∈  Rk, and
V = (v1, …, vk), V ∈  R(n – 1)k. Let us take advantage of
the results obtained in the work [11].

Theorem 3. A system Ax = c is consistent if and
only if the system

(19)

A0
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x j

ξ je j 
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  δ1
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αe2
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1– …
vk
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.

Vy 0 mod α ,=

uy α=



Algorithm IntegerBasis[A, c]
Input: A ∈  Rn × m, c ∈  Rn

Output: Basis of integer solutions or NIL

{h, x1 , x2 , …, xh } := RationalBasis[A, c];

if h = 0 then return NIL;
(gcd, u1, u2, …, uh) := GI[(χ1, χ2, …, χh)];
if gcd ≠ 1 then return NIL
else

k := 1; while uk = 0 do k := k + 1;

zk := ;

for i = 1, 2, …, k – 1, k + 1…, h do
zi := xi – xk(χi – 1);

return {z1, z2, …, zh}.

χ1
1– χ2

1– χh
1–

xiuii 1=

h∑

Fig. 4. The probabilistic algorithm for computing integer
basis of solutions.
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is consistent. If Y is a set of solutions of system (19),

then X = y ∈  Y  is a set of solutions of sys-

tem Ax = c.

Thus, the problem is reduced to solving a homoge-
neous system of dimension (n – 1)-by-(m – n) in the
quotient ring. The corresponding algorithm is pre-
sented in Fig. 5.

Elements of the quotient ring modulo α, where α is
a minor of order n, are represented by elements with the
norm O(nρA). Consider two algorithms of multiplica-
tion of matrices of order n in this quotient ring.

The first algorithm uses fast algorithms of matrix
and number multiplication. Depending on the complex-
ity of these algorithms, the complexity of the matrix

multiplication is estimated between O(n5 ) and
O~(nβ + 1ρA).

The second algorithm uses modular arithmetic and
needs O(nρA) simple modules. The multiplication of
matrices by each simple module requires n3 operations.
Finally, the reconstruction of the result requires recon-
struction of n2 numbers, each of which requires

O(n2 ) operations. Hence, the complexity of this

algorithm can be estimated as O(n4 ).

Both algorithms terminate by computing the
remainders modulo α for all n2 elements of the matrix.
If the standard algorithm for multiplication and division

of numbers is used, O(n2 ) operations are required;
the use of the fast algorithms for multiplication and
division of numbers results in O~(nρA) operations per
element.

Complexity estimates for the algorithms for solving
systems of linear equations in the quotient ring of the
Euclidean ring are given in [11]. Based on them, we
will give without proof estimates of complexity of solv-
ing systems of linear equations in Euclidean domains
for two cases. In the first case, the standard arithmetic
and fast multiplication algorithm are used. In the sec-
ond case, matrix multiplication is implemented by
means of the modular approach.

Proposition 2. The complexity of solving systems
of linear equations with an n-by-m matrix of coeffi-
cients A in the rings Z and F[x] by the p-adic method
with the use of the fast multiplication algorithm is esti-
mated as follows:

y

Vyα 1– 
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CC s,
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δ nδ 1+ m n–( )β 1–+ +( );

Proposition 3. The complexity of solving systems
of linear equations with an n-by-m matrix of coeffi-
cients A in the rings Z and F[x] by the p-adic method
with the use of the modular matrix multiplication algo-
rithm is estimated as follows:

Here, the estimate for the B-model (4), (5) (which is
denoted by the subscript B) is obtained for the general
case of arbitrary n and m. The estimate for the common
computational model (6), (7) (denoted by the subscript
C) is obtained for three particular cases. The superscript

CC s,
n 2n× 7n4ρA
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Algorithm IntegerBasisDeterministic[A, c]
Input: A ∈  Rn × m, c ∈  Rn

Output: Basis of integer solutions or ∅

 := RationalBasis[A, c];

Comments: u = (δ1, …, δk), V = (v1, …, vk).
Y := SolutionOfSystem(Vy = 0 mod α, uy = α);
if Y = ∅  then return ∅

else return {  | y ∈ Y}.
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Fig. 5. The deterministic algorithm for computing integer
basis of solutions.
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stands for three types of matrices of coefficients: a
quasi-square matrix (m – n ! n); an n-by-2n matrix
(n × 2n); and a matrix the number of columns in which
is much greater than the number of rows (m @ n), when
we can neglect n as compared to m. In the above esti-
mates,

6. CONCLUSION

The traditional method of solving systems of linear
equations in Euclidean domains suggests the unimodu-
lar transformation of the augmented matrix to the Smith
form or the transformation of the matrix of coefficients
augmented by the unit vector to the Hermite form. In
both cases, the basic difficulty is an uncontrolled
growth of coefficients appearing in intermediate calcu-
lations when computing the unimodular multiplier.

The main distinctive feature of the suggested
method is that coefficients in the intermediate calcula-
tions do not grow. Each coefficient appearing in the
course of computation is either a minor of the original
matrix of coefficients or a number in the ring of resi-
dues modulo this minor. In both cases, the estimate of
its magnitude can easily be derived from Hadamard’s
inequality.

The p-adic methods work very well in many com-
puter algebra problems, and the best method for solving
determined systems in Euclidean domains is just the
p-adic method.

Having this in mind, an attempt to use the p-adic
method for finding a basis set of solutions in the quo-
tient field seems quite natural. Each solution vector is a
ratio of numbers, which are not greater than the corre-
sponding minors of the original matrix.

The basis set in the domain can further be computed
either by the probabilistic method by obtaining one
integer solution and reconstructing the rational basis to
an integer one or by the deterministic method by going
to an equivalent system in the ring of residues modulo
the leading minor. This, “natural,” algebraic approach
turned out quite justified.

Note also that, in this paper, we considered only
dense systems, i.e., systems that are not assumed to
have many zero elements or a matrix of coefficients of
a special form. Methods for solving sparse systems are
discussed in [25, 26], and relevant parallel algorithms,
in [26, 27].
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