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Abstract. We discuss the algorithm for obtain the symbolic analytical solution
of inhomogeneous system of ordinary linear differential equations with con-
stant coefficients. The developed algorithm may be used for obtaining partial
and general solutions of differential equations in an analytical form. It may
be used for obtaining the solution with the required accuracy. This algorithm
is efficient for the solution of large systems of differential equations. This al-
gorithm is a part of the Mathpar computer algebra system. We demonstrate
several examples in the Mathpar system.

1. Production of the problem

Given a heterogeneous system of ordinary linear differential equations with
constant coefficients:

n∑
j=1

Dji(t)xi(t) = fi(t), Dji(t) =

m∑
k=0

akji
dk

dtk
, i = 1, ...,m, akji ∈ R, n,m ∈ N, (1)

where akji — real numbers, fi(t), xi(t) — bounded on R+ function, having a finite
number of discontinuities I race and satisfying the conditions: fi(t) ≡ 0 at t < 0,
|fi(t)| < Mes0t at t > 0, where M > 0, s0 ≥ 0 — some real constants.

The system (1) can be written in matrix form:

A(t)X(t) = F (t), (2)

where

A(t) =


D11(t) D12(t) . . . D1m(t)
D21(t) D22(t) . . . D2m(t)
. . . . . . . . . . . .

Dn1(t) Dn2(t) . . . Dnm(t)

 ,

1This work was partially supported by the Russian Foundation for Basic Research (grant No.
12-07-00755, 12-01-06020).
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X(t) = [x1(t), ..., xn(t)]T , F (t) = [f1(t), ..., fn(t)]T .

Let x
(k)
i (t) denotes the k derivative of the function xi(t), a number of xk0i

define the initial conditions:

x
(k)
i (0) = xk0i, (3)

where k = 1, 2, ...,m− 1, i = 1, 2, ...,m, xk0i ∈ R.
We assume, that in general each of the functions fi(t) on the right side may

take the form of a finite sum:

fi(t) =
∑
j

pij(t)e
δijt sinµij (γijt) cosνij (βijt)UnitStep(t− αij),

where αij , βij , γij , δij ∈ R, µij , νij ∈ N, pij(t) — polynomial variable t, function
UnitStep(t) takes the value 1 for a non-negative argument and a value of 0 for the
remaining.

Required to find a solution X(t) systems (1) or (2), satisfying the conditions
(3), in an analytical form.

The solution of system (1) called private, when the initial conditions are
given numbers. The solution of system (1) called the general solution, if the initial
conditions included in the decision to free variables, which can be chosen so, the
solution X(t) satisfy arbitrary initial conditions.

2. Algorithm of the Laplace

The algorithm consists of three stages [1-8].
Step I. The direct Laplace transform of differential equations.
The Laplace transform of the function f(t):

F(p) =

∫ ∞
0

f(t)e−ptdt, p ∈ C. (4)

As a result of the transformation functions, standing on the left and right
parts of the system of differential equations (1), and initial conditions (3) by the
formula (4) obtain a system of algebraic equations:

A(p)X (p)− B(p) = F(p). (5)

Here A(p) — image of the left side of the system (1), F(p) — image of the
right-hand side of (1), B(p) — vector, appearing with the introduction of initial
conditions (3).

Step II. The solution of the algebraic system.
The solution of the algebraic system (5) sought in the form

X (p) = A(p)−1(F(p) + B(p)). (6)

The result is a vector of of rational functions of p.
Step III. The inverse Laplace transform.
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The inverse Laplace transform of the function F(p):

f(t) = L−1{F} =
1

2πi

∫ i∞

−i∞
eptF(p)dp.

The desired solution (1) given by the vector X(t):

X(t) =
1

2πi

∫ i∞

−i∞
eptX (p)dp. (7)

3. Direct Laplace transform

Let F(p) — image of the function f(t) at direct Laplace transform. As a
result, the direct conversion Laplace derivative n order of the function f(t) we get
polynomial of degree n∫ ∞

0

f (n)(t)e−ptdt = pnF(p)− pn−1f(0)− pn−2f
′
(0)− . . .− f (n−1)(0). (8)

As a result, the direct left of the Laplace transform part of a system of differ-
ential equations is transformed into a matrix polynomials A(p) one real variable
p. ∫ ∞

0

n∑
j=1

m∑
k=0

akji
dk

dtk
xi(t)e

−ptdt =

n∑
j=1

Dji(p)xi(p),

where Dji(p) =
∑m
i=1 akjip

k.

A(p) =


D11(p) D12(p) . . . D1m(p)
D21(p) D22(p) . . . D2m(p)
. . . . . . . . . . . .
Dn1(p) Dn2(p) . . . Dnm(p)

 . (9)

Direct result of the Laplace transform (4) right-hand side is the vector func-
tions.

F(p) = [f1(p), . . . , fn(p)]T ,

Each of the functions fi(p) is the sum of products exponential and rational func-
tions

fi(p) =

n∑
j=1

Qij(p)e
αijp

L(p)
, where Qij(p), L(p) — polynomials. (10)

The result of the transformation of the initial conditions is the sum of prod-
ucts of polynomials p on the free variables, denoting the initial conditions (3):

B(p) =

n∑
i=1

m−1∑
k=0

dki(p)x
k
0i, dik(p) =

m−1∑
i=k

ai+1,ip
i−k. (11)

As a result the Laplace transform of the system of ordinary linear differential
equations, we obtain algebraic system of linear equations

X (p) = A(p)−1(F(p) + B(p)).
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4. Solution of the algebraic system of linear equations

For a matrix of polynomials A(p) ∈ C[p]n×m, given by the formula (9), com-
pute the inverse matrix A−1 = A∗(p)/det(A(p)), where A∗(p) — adjoint matrix,
det(A(p)) — determinant.

Polynomial det(A(p)) decompose into linear factors in of C :

det(A(p)) =

r∏
k=0

(p− pk)εk , where r ≤ nm, pk ∈ C, εk ∈ N. (12)

Spread the fraction 1/det(A(p)) in the sum of simple fractions in of C :

1

det(A(p))
=

r∑
k=0

ζk
(p− pk)εk

, where ζk ∈ C. (13)

We denote H(p) = F(p) + B(p) and H(p) = [h1, . . . , hn]T . then, using the
formula (10) and (11), we get:

hi =

n∑
j=1

Qij(p)e
αijp

L(p)
+

n∑
i=1

m−1∑
k=0

dki(p)x
k
0i, dik(p) =

m−1∑
i=k

ai+1,ip
i−k.

Let V = [v1, . . . , vn]T and V = A∗(p) ·H. Then:

vi =

n∑
j=1

Uij(p)e
αijp

O(p)
, where Uij(p), O(p) — polynomials.

We expand vi the sum of simple fractions in C:

vi =

r∑
k=0

ξke
αijp

(p− pk)τk
, where ξk ∈ C, τk ∈ N. (14)

Let us find a solution X (p) = V · 1/det(A(p)),

X (p) = V ·
r∑

k=0

ζk
(p− pk)εk

.

Let X (p) = [χ1, . . . , χn]T . Then

χi(p) =

r∑
k=0

ηke
αijp

(p− pk)εk
, where ηk ∈ C. (15)

Remark 1. Expansion (12) factorization of the determinant det(A(p)) re-
quires the calculation of the roots of a polynomial. The roots are approximately.
The accuracy of the calculations roots affects the error of the solution X(t) sys-
tems (1). The dependence of the error of the obtained solution systems (1) on the
accuracy of the roots investigated in [8].
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5. Inverse Laplace transform

For each element of the vector X (p) = [χ1(p), . . . , χn(p)]T find the inverse
transformation Laplace (7) X(t) = [x1(t), . . . , xn(t)]T :

xi(t) = L−1{χi(p)}, where i = 1, 2, . . . , n.
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